210
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Effects of static magnetic fields on the structure, polymerization, and bioelectric of tubulin assemblies

, &
Pages 3370-3383 | Received 21 Jul 2016, Accepted 19 Oct 2016, Published online: 28 Nov 2016

References

  • Amos, L. A., & Amos, W. B. (1991). The bending of sliding microtubules imaged by confocal light microscopy and negative stain electron microscopy. Journal of Cell Science, 14, 95–101.10.1242/jcs.1991.Supplement_14.20
  • Amos, L. A., & Schlieper, D. (2005). Microtubules and maps. Adv Protein Chem, 71, 257–297.10.1016/S0065-3233(04)71007-4
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences, 98, 10037–10041.10.1073/pnas.181342398
  • Bornot, A., Etchebest, C., & DeBrevern, A. G. (2011). Predicting protein flexibility through the prediction of local structures. Proteins, 79, 839–852.10.1002/prot.22922
  • Bras, W., Diakun, G. P., Diaz, J. F., Maret, G., Kramer, H., Bordas, J., & Medrano, F. J. (1998). The susceptibility of pure tubulin to high magnetic fields: A magnetic birefringence and X-ray fiber diffraction study. Biophysical Journal, 74, 1509–1521.10.1016/S0006-3495(98)77863-4
  • Bret, M. L., & Zimm, B. H. (1984). Distribution of counterions around a cylindrical polyelectrolyte and manning’s condensation theory. Biopolymers, 23, 287–312.10.1002/(ISSN)1097-0282
  • Cantero, M., Perez, P. L., Smoler, M., Etchegoyen, C. V., & Cantiello, H. F. (2016). Electrical oscillations in two-dimensional microtubular structures. Scientific Reports, 6, 1–16. doi:10.1038/srep27143
  • Churchill, C. D. M., Klobukowski, M., & Tuszynski, J. A. (2016). Analysis of the binding mode of laulimalide to microtubules: Establishing a laulimalide–tubulin pharmacophore. Journal of Biomolecular Structure and Dynamics, 34, 1455–1469.10.1080/07391102.2015.1078115
  • Dadras, A., Riazi, G. H., Afrasiabi, A., Naghshineh, A., Ghalandari, B., & Mokhtari, F. (2013). In vitro study on the alterations of brain tubulin structure and assembly affected by magnetite nanoparticles. JBIC Journal of Biological Inorganic Chemistry, 18, 357–369.10.1007/s00775-013-0980-x
  • Dini, L., & Abbro, L. (2005). Bioeffects of moderate intensity static magnetic fields on cell cultures. Micron, 6, 195–217.10.1016/j.micron.2004.12.009
  • Freedman, H., Rezania, V., Priel, A., Carpenter, A., Noskov, S. Y., & Tuszynski, J. A. (2010). Model of ionic currents through microtubule nanopores and the lumen. Physical Review E, 81, 051912.10.1103/PhysRevE.81.051912
  • Friesen, D. E., Craddock, T. J., Kalra, A. P., & Tuszynski, J. A. (2015). Biological wires, communication systems, and implications for disease. Biosystems, 127, 14–27.10.1016/j.biosystems.2014.10.006
  • Glaeser, R. M. (1971). Limitations to significant information in biological electron microscopy as a result of radiation damage. Journal of Ultrastructure Research, 36, 466–482. 0022-5320 ISBN10.1016/S0022-5320(71)80118-1
  • Hameroff, S., Nip, A., Porter, M., & Tuszynski, J. A. (2002). Conduction pathways in microtubules, biological quantum computation, and consciousness. Biosystems, 64, 149–168.10.1016/S0303-2647(01)00183-6
  • Isozaki, N., Nakahara, T., Shintaku, H., Kotera, H., Meyhofer, E., & Yokokawa, R. (2014). Control of microtubule trajectory within an electric field by altering surface charge density. Scientific Reports, 5, 1–8. doi:10.1038/srep076691
  • Kim, S., & Im, W. (2010). Static magnetic fields inhibit proliferation and disperse subcellular localization of gamma complex protein in cultured C2C12 myoblast cells. Cell Biochem Biophys, 57, 1. doi:10.1007/s1203-010-9076-1.
  • Lee, J. C., & Timasheff, S. N. (1977). In vitro reconstitution of calf brain microtubules: Effects of solution variable. Biochemistry, 16, 1754–1764.10.1021/bi00627a037
  • Lowe, J., Li, H., Downing, K. H., & Nogales, E. (2001). Refined structure of αβ-tubulin at 3.5 Å resolution. Journal of Molecular Biology, 313, 1045–1057.10.1006/jmbi.2001.5077
  • MacRae, T. H. (1992). Microtubule organization by cross-linking and bundling proteins. Biochem Biophys Acta, 1160, 145–155.
  • Miller, H. P., & Wilson, L. (2010). Preparation of microtubule protein and purified tubulin from bovine brain by cycles of assembly and disassembly and phosphocellulose chromatography. In L. Wilson & J. J. Correia (Eds.), Methods in cell biology (pp. 2–15). San Diego, CA: Academic Press.
  • Minoura, I., & Muto, E. (2006). Dielectric measurement of individual microtubules using the electroorientation method. Biophysical Journal, 90, 3739–3748.10.1529/biophysj.105.071324
  • Mithieux, G., Chauvin, F., Roux, B., & Rousset, B. (1985). Association states of tubulin in the presence and absence of microtubule associated proteins analysis by electric birefringence. Biophysical Chemistry, 22, 307–316.10.1016/0301-4622(85)80054-5
  • Nogales, E., Wolf, S. G., & Downin, K. H. (1998). Structure of the αβ-tubulin dimer by electron crystallography. Nature, 391, 199–203.10.1038/34465
  • Ojeda-May, P., & Garcia, M. E. (2010). Electric field-driven disruption of a native beta-sheet protein conformation and generation of a helix-structure. Biophysical Journal, 99, 595–599.10.1016/j.bpj.2010.04.040
  • Pizzi, R., Strini, G., Fiorentini, S., Pappalardo, V., & Pregnolato, M. (2010). Evidences of new biophysical properties of new biophysical properties. In S. J. Kwon (Ed.), Artificial neural networks, Ch. 20. New York, NY: Nova science.
  • Priel, A., Ramos, A., Tuszynski, J. A., & Cantiello, H. F. (2006). A biopolymer transistor: Electrical amplification by microtubules. Biophysical Journal, 90, 4639–4643.10.1529/biophysj.105.078915
  • Raja, S. O., Dasgupta, A. K., & Jain, N. (2014). Instant response of live HeLa cells to static magnetic field and its magnetic adaptation. arXiv:1407.3499v1
  • Raja, S. O., Dasgupta, A. K., & Jain, N. (2015). Superparamagnetism of tryptophan and walk memory of proteins. arXiv:1508.06943v1
  • Rosen, A. D. (1993). Membrane response to static magnetic fields: Effect of exposure duration. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1148, 317–320.10.1016/0005-2736(93)90145-P
  • Saeidi, H. R., Lohrasebi, A., & Mahnam, K. (2014). External electric field effects on mechanical properties of αβ-tubulin dimer of microtubules: A molecular dynamics study. Journal of Molecular Modeling, 20, 2395. doi:10.1007/s00894-014-2395-1
  • Sahu, S., Ghosh, S., Gosh, B., Aswani, K., Hirata, K., Fujita, D., & Bandyopadhyay, A. (2013). Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosensors and Bioelectronics, 47, 141–148.10.1016/j.bios.2013.02.050
  • Sataric, M. V., Tuszynski, J. A., & Zakula, R. B. (1993). Kink like excitation as an energy transfer mechanism in microtubules. Physical Review E, 48, 589–597.10.1103/PhysRevE.48.589
  • Shelanski, M. L., Gaskin, F., & Cantor, C. R. (1973). Microtubule assembly in the absence of added nucleotides. Proceedings of the National Academy of Sciences, 70, 765–768.10.1073/pnas.70.3.765
  • Shen, C., Menon, R., Das, D., Bansal, N., Nahar, N., Guduru, N., … Reshetynak, Y. K. (2008). The protein fluorescence and structural toolkit: Database and programs for the analysis of protein fluorescence and structural data. Proteins: Structure, Function, and Bioinformatics, 71, 1744–1754.
  • Stracke, R., Bohm, K. J., Wollweber, L., Tuszynski, J. A., & Unger, E. (2002). Analysis of the migration behaviour of single microtubules in electric fields. Biochemical and Biophysical Research Communications, 293, 602–609.10.1016/S0006-291X(02)00251-6
  • Sumitro, S. B. (2012). Self-assembly and magnetism of biological molecules. Berkala Penelitian Hayati, 17, 127–129.
  • Tang-Schomer, M. D., Patel, A. R., Baas, P. W., & Smith, D. H. (2010). Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. The FASEB Journal, 24, 1401–1410.10.1096/fj.09-142844
  • Tuszinski, J. A., Hameroff, S., Sataric, M. V., Tripsova, B., & Nip, M. L. A. (1995). Ferroelectric behavior in microtubule dipole lattices: Implications for information processing, signaling and assembly/disassembly. Journal of Theoretical Biology, 174, 371–380.10.1006/jtbi.1995.0105
  • Tuszyiski, J. A., Brown, J. A., Crawford, E., Carpenter, E. J., Nip, M. L. A., Dixon, J. M., & Sataric, M. V. (2005). Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules. Mathematical and Computer Modelling, 41, 1055–1070.10.1016/j.mcm.2005.05.002
  • Umnov, M., Palusinski, O. A., Deymier, P. A., Guzman, R., Hoying, J., Barnaby, H., … Raghavan, S. (2007). Experimental evaluation of electrical conductivity of microtubules. Journal of Materials Science, 42, 373–378.10.1007/s10853-006-1075-7
  • Uppalapati, M., Haung, Y., Jackson, T. N., & Hancock, W. O. (2008). Microtubule alignment and manipulation using AC electrokinetics. Small, 4, 1371–1381.10.1002/smll.v4:9
  • Van den Heuvel, M. G. L., DeGraaff, M. G., Lemay, S. G., & Dekker, S. (2007). Electrophoresis of individual microtubules in microchannels. Proceedings of the National Academy of Sciences, 104, 770–7775.
  • Vassilev, P. M., Dronzine, R. T., Vassileva, M. P., & Georgiev, G. A. (1982). Parallel arrays of microtubles formed in electric and magnetic fields. Bioscience Reports, 2, 1025–1029.10.1007/BF01122171
  • Woolf, N. J., & Tuszynski, J. A. (2010). Nanoneuroscience: Structural and functional roles of neural cytoskeleton in health and disease. In T. M. Deserno (Ed.), Biological and biomedical physics series (pp. 85–127). Berlin, Heidelberg: Springer-verlag.
  • Yan, Y., & Marriott, G. (2003). Analysis of protein interactions using fluorescence technologies. Curr Opin Chem Biol, 7, 635–640.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.