279
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Structure-based screening, ADMET profiling, and molecular dynamic studies on mGlu2 receptor for identification of newer antiepileptic agents

, , , &
Pages 3433-3448 | Received 04 Aug 2016, Accepted 26 Oct 2016, Published online: 01 Dec 2016

References

  • Abad-Zapatero, C., & Metz, J. T. (2005). Ligand efficiency indices as guideposts for drug discovery. Drug Discovery Today, 10, 464–469. doi:10.1016/s1359-6446(05)03386-6
  • ADMET predictorTM v7.1. (2014). S. P., Inc.
  • Alexander, G. M., & Godwin, D. W. (2006). Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Research, 71, 1–22. doi:10.1016/j.eplepsyres.2006.05.012
  • Badhani, B., & Kakkar, R. (2016). In silico studies on potential MCF-7 inhibitors: A combination of pharmacophore and 3D-QSAR modeling, virtual screening, molecular docking, and pharmacokinetic analysis. Journal of Biomolecular Structure and Dynamics, 2016, 1–18. doi: 10.1080/07391102.2016.1202863
  • Bertrand, H. O., Bessis, A. S., Pin, J. P., & Acher, F. C. (2002). Common and selective molecular determinants involved in metabotopic glutamate receptor agonist activity. Journal of Medicinal Chemistry, 45, 3171–3183. doi:10.1021/jm010323l
  • Butina, D., Segall, M. D., & Frankcombe, K. (2002). Predicting ADME properties in silico: Methods and models. Drug Discovery Today, 7, S83–88. doi:10.1016/S1359-6446(02)02288-2
  • Cartmell, J., Adam, G., Chaboz, S., Henningsen, R., Kemp, J. A., Klingelschmidt, A., … Mutel, V. (1998). Characterization of [3H]-(2S, 2′R,3′R)-2-(2′,3′-dicarboxy- cyclopropyl)glycine ([3H]-DCG IV) binding to metabotropic mGlu2 receptor-transfected cell membranes. British Journal of Pharmacology, 123, 497–504. doi:10.1038/sj.bjp.0701647
  • Center, S. A. (2007). Interpretation of liver enzymes. Veterinary Clinics of North America: Small Animal Practice, 37, 297–333, vii. doi: 10.1016/j.cvsm.2006.11.009
  • Chapman, A. G. (2000). Glutamate and epilepsy. The Journal of Nutrition, 130, 1043S–1045S. Retrieved from http://jn.nutrition.org/content/130/4/1043S.short
  • Delogu, G., Picciau, C., Ferino, G., Quezada, E., Podda, G., Uriarte, E., & Viña, D. (2011). Synthesis, human monoamine oxidase inhibitory activity and molecular docking studies of 3-heteroarylcoumarin derivatives. European Journal of Medicinal Chemistry, 46, 1147–1152. doi:10.1016/j.ejmech.2011.01.033
  • Dominguez, C., Prieto, L., Valli, M. J., Massey, S. M., Bures, M., Wright, R. A., … Monn, J. A. (2005). Methyl substitution of 2-aminobicyclo[3.1.0]hexane 2,6-dicarboxylate (LY354740) determines functional activity at metabotropic glutamate receptors: Identification of a subtype selective mGlu2 receptor agonist. Journal of Medicinal Chemistry, 48, 3605–3612. doi:10.1021/jm040222y
  • Estrada, E., Uriarte, E., Molina, E., Simon-Manso, Y., & Milne, G. W. (2006). An integrated in silico analysis of drug-binding to human serum albumin. Journal of Chemical Information and Modeling, 46, 2709–2724. doi:10.1021/ci600274f
  • Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., … Overington, J. P. (2012). ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Research, 40, D1100–D1107. doi:10.1093/nar/gkr777
  • Ghose, A. K., Herbertz, T., Hudkins, R. L., Dorsey, B. D., & Mallamo, J. P. (2012). Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chemical Neuroscience, 3, 50–68. doi:10.1021/cn200100h
  • Guo, J., Hurley, M. M., Wright, J. B., & Lushington, G. H. (2004). A docking score function for estimating ligand-protein interactions: application to acetylcholinesterase inhibition. Journal of Medicinal Chemistry, 47, 5492–5500. doi:10.1021/jm049695v
  • Hevener, K. E., Mehboob, S., Su, P. C., Truong, K., Boci, T., Deng, J., … Johnson, M. E. (2012). Discovery of a novel and potent class of F. tularensis enoyl-reductase (Fabl) inhibitors by molecular shape and electrostatic matching. Journal of Medicinal Chemistry, 55, 268–279. doi: 10.1021/jm201168g
  • Ioakimidis, L., Thoukydidis, L., Mirza, A., Naeem, S., & Reynisson, J. (2008). Benchmarking the reliability of QikProp. Correlation between experimental and predicted values. QSAR & Combinatorial Science, 27, 445–456. doi:10.1002/qsar.200730051
  • Jorgensen, W. L. (2009). Efficient drug lead discovery and optimization. Accounts of Chemical Research, 42, 724–733. doi:10.1021/ar800236t
  • Klodzinska, A., Bijak, M., Chojnacka-Wojcik, E., Kroczka, B., Swiąder, M., Czuczwar, S. J., & Pilc, A. (2000). Roles of group II metabotropic glutamate receptors in modulation of seizure activity. Naunyn-Schmiedeberg’s Archives of Pharmacology, 361, 283–288. doi:10.1007/s002109900197
  • Klodzinska, A., Chojnacka-Wojcik, E., & Pilc, A. (1999). Selective group II glutamate metabotropic receptor agonist LY354740 attenuates pentetrazole- and picrotoxin-induced seizures. Polish Journal of Pharmacology, 51, 543–545. Retrieved from http://if-pan.krakow.pl/pjp/996_14.htm
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advance Drug Delivery Review, 46, 3–26. doi:10.1016/j.addr.2012.09.019
  • Loscher, W., Klitgaard, H., Twyman, R. E., & Schmidt, D. (2013). New avenues for anti-epileptic drug discovery and development. Nature Reviews Drug Discovery, 12, 757–776. doi:10.1038/nrd4126
  • Maestro. (2015). v10.4, Schrodinger, LLC, NY.
  • Matthews, E. J., Kruhlak, N. L., Benz, R. D., & Contrera, J. F. (2004). Assessment of the health effects of chemicals in humans: I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) and no effect level (NOEL) of organic chemicals based on clinical trial data. Current Drug Discovery Technology, 1, 61–76. doi:10.2174/1570163043484789
  • Mithani, S. D., Bakatselou, V., TenHoor, C. N., & Dressman, J. B. (1996). Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharmaceutical Research, 13, 163–167. doi:10.1023/A:1016062224568
  • Moldrich, R. X., Chapman, A. G., Sarro, G. D., & Meldrum, B. S. (2003). Glutamate metabotropic receptors as targets for drug therapy in epilepsy. European Journal of Pharmacology, 476, 3–16. doi:10.1016/S0014-2999(03)02149-6
  • Moldrich, R. X., Jeffrey, M., Talebi, A., Beart, P. M., Chapman, A. G., & Meldrum, B. S. (2001). Anti-epileptic activity of group II metabotropic glutamate receptor agonists (−)-2-oxa-4-aminobicyclo [3.1.0] hexane-4,6-dicarboxylate (LY379268) and (−)-2-thia-4-aminobicyclo [3.1. 0] hexane-4, 6-dicarboxylate (LY389795). Neuropharmacology, 41, 8–18. doi:10.1016/S0028-3908(01)00044-2.
  • Monn, J. A., Prieto, L., Taboada, L., Hao, J., Reinhard, M. R., Henry, S. S., … Clark, B. (2015). Synthesis and pharmacological characterization of C4-(thiotriazolyl)-substituted-2-aminobicyclo [3.1. 0] hexane-2, 6-dicarboxylates. Identification of (1R, 2S, 4R, 5R, 6R)-2-amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY2812223), a highly potent, functionally selective mGlu2 receptor agonist. Journal of Medicinal Chemistry, 58, 7526–7548. doi:10.1021/acs.jmedchem.5b01124
  • Monn, J. A., Prieto, L., Taboada, L., Pedregal, C., Hao, J., Reinhard, M. R., … McKinzie, D. I. (2015). Synthesis and pharmacological characterization of C4-disubstituted analogs of 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate: identification of a potent, selective metabotropic glutamate receptor agonist and determination of agonist-bound human mGlu2 and mGlu3 amino terminal domain structures. Journal of Medicinal Chemistry, 58, 1776–1794. doi:10.1021/jm501612y
  • Monn, J. A., Valli, M. J., Massey, S. M., Hansen, M. M., Kress, T. J., Wepsiec, J. P., … Schoepp, D. D. (1999). Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic Acid (LY354740): Identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. Journal of Medicinal Chemistry, 42, 1027–1040. doi:10.1021/jm980616n
  • Monn, J. A., Valli, M. J., Massey, S. M., Wright, R. A., Salhoff, C. R., Johnson, B. G., … Schoepp, D. D. (1997). Design, synthesis, and pharmacological characterization of (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740): A potent, selective, and orally active group 2 metabotropic glutamate receptor agonist possessing anticonvulsant and anxiolytic properties. Journal of Medicinal Chemistry, 40, 528–537. doi:10.1021/jm9606756
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791. doi:10.1002/jcc.21256
  • Moshe, S. L., Perucca, E., Ryvlin, P., & Tomson, T. (2015). Epilepsy: New advances. The Lancet, 385, 884–898. doi:10.1016/S0140-6736(14)60456-6
  • Nair, S. B., Teli, M. K., Pradeep, H., & Rajanikant, G. K. (2012). Computational identification of novel histone deacetylase inhibitors by docking based QSAR. Computers in Biology and Medicine, 42, 697–705. doi:10.1016/j.compbiomed.2012.04.001
  • Pajouhesh, H., & Lenz, G. R. (2005). Medicinal chemical properties of successful central nervous system drugs. The Journal of the American Society for Experimental NeuroTherapeutics, 2, 541–553. doi:10.1602/neurorx.2.4.541
  • Pandey, R. K., Kumbhar, B. V., Srivastava, S., Malik, R., Sundar, S., Kunwar, A., & Prajapati, V. K. (2016). Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: Binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 2016, 1–18. doi: 10.1080/07391102.2015.1135298
  • Sanguinetti, M. C., & Tristani-Firouzi, M. (2006). hERG potassium channels and cardiac arrhythmia. Nature, 440, 463–469. doi: 10.1038/nature04710
  • SciFinderTM, American Chemical Society, 2015.
  • Spooren, W., Ballard, T., Gasparini, F., Amalric, M., Mutel, V., & Schreiber, R. (2003). Insight into the function of Group I and Group II metabotropic glutamate (mGlu) receptors: Behavioural characterization and implications for the treatment of CNS disorders. Behavioural Pharmacology, 14, 257–277. doi:10.1097/01.fbp.0000081783.35927.8f
  • Su, P.-C., Tsai, C.-C., Mehboob, S., Hevener, K. E., & Johnson, M. E. (2015). Comparison of radii sets, entropy, QM methods, and sampling on MM-PBSA, MM-GBSA, and QM/MM-GBSA ligand binding energies of F. tularensis enoyl-ACP reductase (FabI). Journal of Computational Chemistry, 36, 1859–1873. doi:10.1002/jcc.24011
  • Ure, J., Baudry, M., & Perassolo, M. (2006). Metabotropic glutamate receptors and epilepsy. Journal of the Neurological Sciences, 247, 1–9. doi:10.1016/j.jns.2006.03.018
  • Vyas, V. K., Ghate, M. D., & Goel, A. (2013). Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors. Journal of Molecular Graphics and Modelling, 42, 17–25. doi:10.1016/j.jmgm.2013.01.010
  • van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J. R., & Raevsky, O. A. (1998). Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. Journal of Drug Targeting, 6, 151–165. doi:10.3109/10611869808997889
  • Yamashita, F., & Hashida, M. (2004). In silico approaches for predicting ADME properties of drugs. Drug Metabolism and Pharmacokinetics, 19, 327–338. doi:10.2133/dmpk.19.327
  • Zhang, H., Cilz, N. I., Yang, C., Hu, B., Dong, H., & Lei, S. (2015). Depression of neuronal excitability and epileptic activities by group II metabotropic glutamate receptors in the medial entorhinal cortex. Hippocampus, 25, 1299–1313. doi:10.1002/hipo.22437
  • Zhu, T., Cao, S., Su, P. C., Patel, R., Shah, D., Chokshi, H. B., … Hevener, K.E. (2013). Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis: Miniperspective. Journal of Medicinal Chemistry, 56, 6560–6572. doi:10.1021/jm301916b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.