509
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

New potential inhibitors of mTOR: a computational investigation integrating molecular docking, virtual screening and molecular dynamics simulation

&
Pages 3555-3568 | Received 23 May 2016, Accepted 11 Nov 2016, Published online: 09 Dec 2016

References

  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17, 412–425. doi:10.1002/prot.340170408
  • Andexer, J. N., Kendrew, S. G., Nur-e-Alam, M., Lazos, O., Foster, T. A., Zimmermann, A. S., & Wilkinson, B. (2011). Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proceedings of the National Academy of Sciences, 108, 4776–4781. doi:10.1073/pnas.1015773108
  • Backman, T. W., Cao, Y., & Girke, T. (2011). ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Research, 39(Web Server issue), W486–491. doi:10.1093/nar/gkr320
  • Baker, E. N., & Hubbard, R. E. (1984). Hydrogen bonding in globular proteins. Progress in Biophysics & Molecular Biology, 44, 97–179.
  • Ballou, L. M., & Lin, R. Z. (2008). Rapamycin and mTOR kinase inhibitors. Journal of Chemical Biology, 1, 27–36. doi:10.1007/s12154-008-0003-5
  • Banaszynski, L. A., Liu, C. W., & Wandless, T. J. (2005). Characterization of the FKBP.rapamycin.FRB ternary complex. Journal of the American Chemical Society, 127, 4715–4721. doi:10.1021/ja043277y
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.
  • Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Brice, M. D., Rodgers, J. R., & Tasumi, M. (1978). The Protein Data Bank: A computer-based archival file for macromolecular structures. Archives Biochemistry Biophysics, 185, 584–591.
  • Bielska, E., Lucas, X., Czerwoniec, A., Kasprzak, J. M., Kaminska, K. H., & Bujnicki, J. M. (2011). Virtual screening strategies in drug design–methods and applications. Journal of Biotechnology Computational Biology and Bionanotechnology, 92, 249–264.
  • Chaurasia, S. (2013). In silico study of protein–protein interaction stabilization and mechanical force application on biomolecules. Milan: Università Degli Studi di Milano.
  • Chaurasia, S., Pieraccini, S., De Gonda, R., Conti, S., & Sironi, M. (2013). Molecular insights into the stabilization of protein–protein interactions with small molecule: The FKBP12–rapamycin–FRB case study. Chemical Physics Letters, 587, 68–74. doi:10.1016/j.cplett.2013.09.042
  • Chen, C. Y. (2011). TCM Database@Taiwan: the world's largest traditional Chinese medicine database for drug screening in silico. PLoS ONE, 6, e15939. doi:10.1371/journal.pone.0015939
  • Choi, J., Chen, J., Schreiber, S. L., & Clardy, J. (1996). Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science, 273, 239–242.
  • Dallakyan, S. (2008–2010). PyRx-Python prescription (Version v.0.8). CA: The Scripps Research Institute.
  • Delano, W. L. (2002). The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific. Retrieved from http://www.pymol.org
  • Explorer, A. P. (2001). Property explorer OSIRIS. Retrieved from http://www.organic-chemistry.org/prog/peo/
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges. Tetrahedron, 36, 3219–3228.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov, 10, 449–461. doi:10.1517/17460441.2015.1032936
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17. doi:10.1186/1758-2946-4-17
  • Hess, B., Bekker, H.,Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO
  • Huang, S., Bjornsti, M. A., & Houghton, P. J. (2003). Rapamycins: Mechanism of action and cellular resistance. Cancer Biology Therapy, 2, 222–232.
  • Huey, R., Morris, G. M., Olson, A. J., & Goodsell, D. S. (2007). A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry, 28, 1145–1152. doi:10.1002/jcc.20634
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.
  • IBM Corp. Released. (2013). IBM SPSS statistics for windows, version 22.0. Armonk, NY: IBM Corp.
  • InterBioScreen. (2014). InterBioScreen. Retrieved from http://www.ibscreen.com
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC–a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45, 177–182. doi:10.1021/ci049714+
  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52, 1757–1768. doi:10.1021/ci3001277
  • Kar, S., & Roy, K. (2013). How far can virtual screening take us in drug discovery? Expert Opinion on Drug Discovery, 8, 245–261.
  • Koziara, K. B., Stroet, M., Malde, A. K., & Mark, A. E. (2014). Testing and validation of the automated topology builder (ATB) version 2.0: prediction of hydration free enthalpies. Journal of Computer-Aided Molecular Design, 28, 221–233. doi:10.1007/s10822-014-9713-7
  • Kumari, R., Kumar, R., Lynn, A., & Consortium, O. S. D. D. (2014). g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962. doi:10.1021/ci500020m
  • Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. Journal of Cell Science, 122, 3589–3594. doi:10.1242/jcs.051011
  • Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149, 274–293. doi:10.1016/j.cell.2012.03.017
  • Lavecchia, A., & Di Giovanni, C. (2013). Virtual screening strategies in drug discovery: A critical review. Current Medicinal Chemistry, 20, 2839–2860.
  • Lengauer, T., Lemmen, C., Rarey, M., & Zimmermann, M. (2004). Novel technologies for virtual screening. Drug Discovery Today, 9, 27–34. doi:10.1016/S1359-6446(04)02939-3
  • Lindahl, E., Hess, B., & Van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306–317.
  • McDonald, I. K., & Thornton, J. M. (1994). Satisfying hydrogen bonding potential in proteins. Journal of Molecular Biology, 238, 777–793. doi:10.1006/jmbi.1994.1334
  • Miteva, M. A., Violas, S., Montes, M., Gomez, D., Tuffery, P., & Villoutreix, B. O. (2006). FAF-Drugs: free ADME/tox filtering of compound collections. Nucleic Acids Research, 34(Web Server issue), W738–744. doi:10.1093/nar/gkl065
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791. doi:10.1002/jcc.21256
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656–1676. doi:10.1002/jcc.20090
  • Park, H., Choe, H., & Hong, S. (2014). Virtual screening and biochemical evaluation to identify new inhibitors of mammalian target of rapamycin (mTOR). Bioorganic & Medicinal Chemistry Letters, 24, 835–838. doi:10.1016/j.bmcl.2013.12.081
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612. doi:10.1002/jcc.20084
  • Polivka, J., & Janku, F. (2014). Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacology & Therapeutics, 142, 164–175. doi:10.1016/j.pharmthera.2013.12.004
  • Ruvinsky, A. M., Kirys, T., Tuzikov, A. V., & Vakser, I. A. (2012). Structure fluctuations and conformational changes in protein binding. Journal of Bioinformatics and Computational Biology, 10, 1241002. doi:10.1142/S0219720012410028
  • Schenone, S., Brullo, C., Musumeci, F., Radi, M., & Botta, M. (2011). ATP-competitive inhibitors of mTOR: an update. Current Medicinal Chemistry, 18, 2995–3014.
  • Sehgal, S. N. (2003). Sirolimus: Its discovery, biological properties, and mechanism of action. Transplantation Proceedings, 35, 7S–14S.
  • Smyth, L. A., & Collins, I. (2009). Measuring and interpreting the selectivity of protein kinase inhibitors. Journal of Chemical Biology, 2, 131–151. doi:10.1007/s12154-009-0023-9
  • Sun, S. Y. (2013). mTOR kinase inhibitors as potential cancer therapeutic drugs. Cancer Letters, 340, 1–8. doi:10.1016/j.canlet.2013.06.017
  • Sun, S. Y., Rosenberg, L. M., Wang, X., Zhou, Z., Yue, P., Fu, H., & Khuri, F. R. (2005). Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Research, 65, 7052–7058. doi:10.1158/0008-5472.CAN-05-0917
  • Tamura, K., Fujimura, T., Iwasaki, K., Sakuma, S., Fujitsu, T., Nakamura, K., & Kobayashi, M. (1994). Interaction of tacrolimus(FK506) and its metabolites with FKBP and calcineurin. Biochemical and Biophysical Research Communications, 202, 437–443. doi:10.1006/bbrc.1994.1947
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461. doi:10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. J Comput Chem, 26, 1701–1718. doi:10.1002/jcc.20291
  • Wacheck, V. (2010). mTOR pathway inhibitors in cancer therapy: moving past rapamycin. Pharmacogenomics, 11, 1189–1191. doi:10.2217/pgs.10.113
  • Wang, L., Chen, L., Liu, Z., Zheng, M., Gu, Q., & Xu, J. (2014). Predicting mTOR inhibitors with a classifier using recursive partitioning and Naïve Bayesian approaches. PLoS ONE, 9, e95221. doi:10.1371/journal.pone.0095221
  • Yang, H., Rudge, D. G., Koos, J. D., Vaidialingam, B., Yang, H. J., & Pavletich, N. P. (2013). mTOR kinase structure, mechanism and regulation. Nature, 497, 217–223. doi:10.1038/nature12122
  • Yuan, R., Kay, A., Berg, W. J., & Lebwohl, D. (2009). Targeting tumorigenesis: Development and use of mTOR inhibitors in cancer therapy. Journal of Hematology & Oncology, 2, 45. doi:10.1186/1756-8722-2-45
  • Zhang, Y. J., Duan, Y., & Zheng, X. F. (2011). Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov Today, 16, 325–331. doi:10.1016/j.drudis.2011.02.008
  • Zheng, X. F., Florentino, D., Chen, J., Crabtree, G. R., & Schreiber, S. L. (1995). TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell, 82, 121–130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.