286
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Direct single-molecule observations of DNA unwinding by SV40 large tumor antigen under a negative DNA supercoil state

, , , , , , , , & show all
Pages 32-44 | Received 11 Nov 2016, Accepted 29 Nov 2016, Published online: 05 Jan 2017

References

  • Abdurashidova, G., Radulescu, S., Sandoval, O., Zahariev, S., Danailov, M. B., Demidovich, A., … Falaschi, A. (2007). Functional interactions of DNA topoisomerases with a human replication origin. The EMBO Journal, 26, 998–1009.10.1038/sj.emboj.7601578
  • Adamcik, J., Jeon, J. H., Karczewski, K. J., Metzler, R., & Dietler, G. (2012). Quantifying supercoiling-induced denaturation bubbles in DNA. Soft Matter, 8, 8651–8658.10.1039/c2sm26089a
  • Aitken, C. E., Marshall, R. A., & Puglisi, J. D. (2008). An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophysical Journal, 94, 1826–1835.10.1529/biophysj.107.117689
  • Ak, P., & Benham, C. J. (2005). Susceptibility to superhelically driven DNA duplex destabilization: A highly conserved property of yeast replication origins. PLoS Computational Biology, 1, e7.10.1371/journal.pcbi.0010007
  • Asai, T., Chen, C. P., Nagata, T., Takanami, M., & Imai, M. (1992). Transcription in vivo within the replication origin of the Escherichia coli chromosome: A mechanism for activating initiation of replication. Molecular and General Genetics, 231, 169–178.
  • Bell, D., Sabloff, M., Zannis-Hadjopoulos, M., & Price, G. (1991). Anti-cruciform DNA affinity purification of active mammalian origins of replication. Biochimica et Biophysica Acta-Gene Structure and Expression, 1089, 299–308.10.1016/0167-4781(91)90169-M
  • Benham, C. J. (1979). Torsional stress and local denaturation in supercoiled DNA. Proceedings of the National Academy of Sciences, 76, 3870–3874.10.1073/pnas.76.8.3870
  • Borowiec, J. A., & Hurwitz, J. (1988). Localized melting and structural changes in the SV40 origin of replication induced by T-antigen. The EMBO Journal, 7, 3149.
  • Bramhill, D., & Kornberg, A. (1988). A model for initiation at origins of DNA replication. Cell, 54, 915–918.10.1016/0092-8674(88)90102-X
  • Brooks, T. A., & Hurley, L. H. (2009). The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nature Reviews Cancer, 9, 849–861.
  • Cairns, B. R. (2007). Chromatin remodeling: insights and intrigue from single-molecule studies. Nature Structural & Molecular Biology, 14, 989–996.10.1038/nsmb1333
  • Chen, S. S., & Hsu, M. T. (1984). Evidence for variation of supercoil densities among simian virus 40 nucleoprotein complexes and for higher supercoil density in replicating complexes. Journal of Virology, 51, 14–19.
  • Cheng, L., & Kelly, T. J. (1989). Transcriptional activator nuclear factor I stimulates the replication of SV40 minichromosomes in vivo and in vitro. Cell, 59, 541–551.10.1016/0092-8674(89)90037-8
  • Corless, S., & Gilbert, N. (2016). Effects of DNA supercoiling on chromatin architecture. Biophysical Reviews, 1–14.
  • Courey, A. J., & Wang, J. C. (1983). Cruciform formation in a negatively supercoiled DNA may be kinetically forbidden under physiological conditions. Cell, 33, 817–829.10.1016/0092-8674(83)90024-7
  • Crooke, E., Hwang, D. S., Skarstad, K., Thöny, B., & Kornberg, A. (1991). E. coli minichromosome replication: Regulation of initiation at oriC. Research in Microbiology, 142, 127–130.10.1016/0923-2508(91)90019-7
  • Dean, F. B., Borowiec, J. A., Eki, T., & Hurwitz, J. (1992). The simian virus 40 T antigen double hexamer assembles around the DNA at the replication origin. Journal of Biological Chemistry, 267, 14129–14137.
  • Dean, F. B., & Hurwitz, J. (1991). Simian virus 40 large T antigen untwists DNA at the origin of DNA replication. Journal of Biological Chemistry, 266, 5062–5071.
  • Deb, S., DeLucia, A. L., Baur, C., Koff, A., & Tegtmeyer, P. (1986). Domain structure of the simian virus 40 core origin of replication. Molecular and Cellular Biology, 6, 1663–1670.10.1128/MCB.6.5.1663
  • Deb, S., DeLucia, A. L., Koff, A., Tsui, S., & Tegtmeyer, P. (1986). The adenine-thymine domain of the simian virus 40 core origin directs DNA bending and coordinately regulates DNA replication. Molecular and Cellular Biology, 6, 4578–4584.10.1128/MCB.6.12.4578
  • DeLucia, A. L., Deb, S., Partin, K., & Tegtmeyer, P. (1986). Functional interactions of the simian virus 40 core origin of replication with flanking regulatory sequences. Journal of Virology, 57, 138–144.
  • Eckdahl, T. T., & Anderson, J. N. (1990). Conserved DNA structures in origins of replication. Nucleic Acids Research, 18, 1609–1612.10.1093/nar/18.6.1609
  • Falaschi, A., Abdurashidova, G., Sandoval, O., Radulescu, S., Biamonti, G., & Riva, S. (2007). Molecular and structural transactions at human DNA replication origins. Cell Cycle, 6, 1705–1712.10.4161/cc.6.14.4495
  • Fanning, E., Klimovich, V., & Nager, A. R. (2006). A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Research, 34, 4126–4137.10.1093/nar/gkl550
  • Fanning, E., & Zhao, K. (2009). SV40 DNA replication: From the A gene to a nanomachine. Virology, 384, 352–359.10.1016/j.virol.2008.11.038
  • Fragkos, M., Ganier, O., Coulombe, P., & Méchali, M. (2015). DNA replication origin activation in space and time. Nature Reviews Molecular Cell Biology, 16, 360–374.10.1038/nrm4002
  • Fujita, M., Hori, Y., Shirahige, K., Tsurimoto, T., Yoshikawa, H., & Obuse, C. (1998). Cell cycle dependent topological changes of chromosomal replication origins in Saccharomyces cerevisiae. Genes to Cells, 3, 737–749.10.1046/j.1365-2443.1998.00226.x
  • Fuller, R. S., & Kornberg, A. (1983). Purified dnaA protein in initiation of replication at the Escherichia coli chromosomal origin of replication. Proceedings of the National Academy of Sciences, 80, 5817–5821.10.1073/pnas.80.19.5817
  • Funnell, B. E., Baker, T. A., & Kornberg, A. (1987). In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. Journal of Biological Chemistry, 262, 10327–10334.
  • Gazdar, A. F., Butel, J. S., & Carbone, M. (2002). Opinion: SV40 and human tumours: Myth, association or causality? Nature Reviews Cancer, 2, 957–964.10.1038/nrc947
  • Gilbert, N., & Allan, J. (2014). Supercoiling in DNA and chromatin. Current Opinion in Genetics & Development, 25, 15–21.10.1016/j.gde.2013.10.013
  • Goetz, G. S., Dean, F. B., Hurwitz, J., & Matson, S. W. (1988). The unwinding of duplex regions in DNA by the simian virus 40 large tumor antigen-associated DNA helicase activity. Journal of Biological Chemistry, 263, 383–392.
  • Hertz, G. Z., & Mertz, J. E. (1986). Bidirectional promoter elements of simian virus 40 are required for efficient replication of the viral DNA. Molecular and Cellular Biology, 6, 3513–3522.10.1128/MCB.6.10.3513
  • Hirose, S., & Matsumoto K. (2005). Possible roles of DNA supercoiling in transcription. In T. Ohyama, (Ed.), DNA conformation and transcription (pp. 138–143, Chapter 10), New York, NY: Springer-Verlag.
  • Hirose, S., & Suzuki, Y. (1988). In vitro transcription of eukaryotic genes is affected differently by the degree of DNA supercoiling. Proceedings of the National Academy of Sciences, 85, 718–722.10.1073/pnas.85.3.718
  • Horowitz, D. S., & Wang, J. C. (1984). Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. Journal of Molecular Biology, 173, 75–91.10.1016/0022-2836(84)90404-2
  • Houchens, C. R., Lu, W., Chuang, R. Y., Frattini, M. G., Fuller, A., Simancek, P., & Kelly, T. J. (2008). Multiple mechanisms contribute to Schizosaccharomyces pombe origin recognition complex-DNA interactions. Journal of Biological Chemistry, 283, 30216–30224.10.1074/jbc.M802649200
  • Ishimi, Y., Sugasawa, K., Hanaoka, F., & Kikuchi, A. (1991). Replication of the simian virus 40 chromosome with purified proteins. Journal of Biological Chemistry, 266, 16141–16148.
  • Iwabuchi, M., Shibata, T., Ohtani, T., Natori, M., & Ando, T. (1983). ATP-dependent unwinding of the double helix and extensive supercoiling by Escherichia coli recA protein in the presence of topoisomerase. Journal of Biological Chemistry, 258, 12394–12404.
  • Jeon, J. H., Adamcik, J., Dietler, G., & Metzler, R. (2010). Supercoiling induces denaturation bubbles in circular DNA. Physical Review Letters, 105, 208101.10.1103/PhysRevLett.105.208101
  • Jeon, J. H., & Sung, W. (2008). How topological constraints facilitate growth and stability of bubbles in DNA. Biophysical Journal, 95, 3600–3605.10.1529/biophysj.108.132258
  • Kabakçıoğlu, A., Orlandini, E., & Mukamel, D. (2009). Supercoil formation in DNA denaturation. Physical Review E, 80, 010903.
  • Koster, D. A., Crut, A., Shuman, S., Bjornsti, M. A., & Dekker, N. H. (2010). Cellular strategies for regulating DNA supercoiling: A single-molecule perspective. Cell, 142, 519–530.10.1016/j.cell.2010.08.001
  • Lee, J. B., Hite, R. K., Hamdan, S. M., Xie, X. S., Richardson, C. C., & van Oijen, A. M. (2006). DNA primase acts as a molecular brake in DNA replication. Nature, 439, 621–624.10.1038/nature04317
  • Lee-Chen, G. J., & Woodworth-Gutai, M. (1986). Simian virus 40 DNA replication: Functional organization of regulatory elements. Molecular and Cellular Biology, 6, 3086–3093.10.1128/MCB.6.9.3086
  • Li, J. J., Peden, K. W., Dixon, R. A., & Kelly, T. (1986). Functional organization of the simian virus 40 origin of DNA replication. Molecular and Cellular Biology, 6, 1117–1128.10.1128/MCB.6.4.1117
  • Masai, H., Matsumoto, S., You, Z., Yoshizawa-Sugata, N., & Oda, M. (2010). Eukaryotic chromosome DNA replication: Where, when, and how? Annual Review of Biochemistry, 79, 89–130.10.1146/annurev.biochem.052308.103205
  • Méchali, M. (2010). Eukaryotic DNA replication origins: Many choices for appropriate answers. Nature Reviews Molecular Cell Biology, 11, 728–738.10.1038/nrm2976
  • Mizutani, M., Ohta, T., Watanabe, H., Handa, H., & Hirose, S. (1991). Negative supercoiling of DNA facilitates an interaction between transcription factor IID and the fibroin gene promoter. Proceedings of the National Academy of Sciences, 88, 718–722.10.1073/pnas.88.3.718
  • Mizuuchi, K., Mizuuchi, M., & Gellert, M. (1982). Cruciform structures in palindromic DNA are favored by DNA supercoiling. Journal of Molecular Biology, 156, 229–243.10.1016/0022-2836(82)90325-4
  • Oshige, M., Kawasaki, S., Takano, H., Yamaguchi, K., Kurita, H., Mizuno, T., … Katsura, S. (2011). Direct observation method of individual single-stranded DNA molecules using fluorescent replication protein A. Journal of Fluorescence, 21, 1189–1194.10.1007/s10895-010-0797-8
  • Paleček, E. (1991). Local supercoil-stabilized DNA structure. Critical Reviews in Biochemistry and Molecular Biology, 26, 151–226.10.3109/10409239109081126
  • Pearson, C. E., Zorbas, H., Price, G. B., & Zannis-Hadjopoulos, M. (1996). Inverted repeats, stem-loops, and cruciforms: Significance for initiation of DNA replication. Journal of Cellular Biochemistry, 63, 1–22.10.1002/(ISSN)1097-4644
  • Rampakakis, E., Gkogkas, C., Di Paola, D., & Zannis-Hadjopoulos, M. (2010). Replication initiation and DNA topology: The twisted life of the origin. Journal of Cellular Biochemistry, 110, 35–43.
  • Remus, D., Beall, E. L., & Botchan, M. R. (2004). DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC–DNA binding. The EMBO Journal, 23, 897–907.10.1038/sj.emboj.7600077
  • Roca, J. (2011). The torsional state of DNA within the chromosome. Chromosoma, 120, 323–334.10.1007/s00412-011-0324-y
  • Sakaguchi, K., Ishibashi, T., Uchiyama, Y., & Iwabata, K. (2009). The multi-replication protein A (RPA) system–A new perspective. FEBS Journal, 276, 943–963.10.1111/j.1742-4658.2008.06841.x
  • Seif, R. (1982). New properties of simian virus 40 large T antigen. Molecular and Cellular Biology, 2, 1463–1471.10.1128/MCB.2.12.1463
  • Seroussi, E., & Lavi, S. (1993). Replication protein A is the major single-stranded DNA binding protein detected in mammalian cell extracts by gel retardation assays and UV cross-linking of long and short single-stranded DNA molecules. Journal of Biological Chemistry, 268, 7147–7154.
  • Strick, T. R., Allemand, J. F., Bensimon, D., & Croquette, V. (1998). Behavior of supercoiled DNA. Biophysical Journal, 74, 2016–2028.10.1016/S0006-3495(98)77908-1
  • Takahashi, S., Kawasaki, S., Yamaguchi, K., Miyata, H., Kurita, H., Mizuno, T., … Katsura, S. (2013). Direct observation of fluorescently labeled single-stranded λDNA molecules in a micro-flow channel. Journal of Fluorescence, 23, 635–640.10.1007/s10895-013-1210-1
  • Takahashi, S., Motooka, S., Usui, T., Kawasaki, S., Miyata, H., Kurita, H., … Katsura, S. (2015). Direct single-molecule observations of local denaturation of a dna double helix under a negative supercoil state. Analytical Chemistry, 87, 3490–3497.10.1021/acs.analchem.5b00044
  • Takahashi, S., Usui, T., Kawasaki, S., Miyata, H., Kurita, H., Matsuura, S.-I., … Katsura, S. (2014). Real-time single-molecule observations of T7 Exonuclease activity in a microflow channel. Analytical Biochemistry, 457, 24–30.10.1016/j.ab.2014.04.012
  • Travers, A., & Muskhelishvili, G. (2005). DNA supercoiling – a global transcriptional regulator for enterobacterial growth? Nature Reviews Microbiology, 3, 157–169.10.1038/nrmicro1088
  • Umek, R. M., & Kowalski, D. (1987). Yeast regulatory sequences preferentially adopt a non-B conformation in supercoiled DNA. Nucleic Acids Research, 15, 4467–4480.
  • Walter, J., & Newport, J. (2000). Initiation of eukaryotic DNA replication: Origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase α. Molecular Cell, 5, 617–627.10.1016/S1097-2765(00)80241-5
  • Wang, J. C. (1996). DNA topoisomerases. Annual Review of Biochemistry, 65, 635–692.10.1146/annurev.bi.65.070196.003223
  • Wang, J. C. (2002). Cellular roles of DNA topoisomerases: A molecular perspective. Nature Reviews Molecular Cell Biology, 3, 430–440.10.1038/nrm831
  • Wang, J. C., & Liu, L. F. (1990). DNA replication: Topological aspects and the roles of DNA topoisomerases. In N. R. Cozzarelli & J. C. Wang (Eds.), DNA topology and its biological effects (pp. 321–340, Chapter 11). New York, NY: Cold Spring Harbor Laboratory Press.
  • Wang, J. C., Peck, L. J., & Becherer, K. (1983, January). DNA supercoiling and its effects on DNA structure and function. In Cold spring harbor symposia on quantitative biology (Vol. 47, pp. 85–91). New York, NY: Cold Spring Harbor Laboratory Press.
  • Ward, G. K., Mckenzie, R., Zannis-Hadjopoulos, M., & Price, G. B. (1990). The dynamic distribution and quantification of DNA cruciforms in eukaryotic nuclei. Experimental Cell Research, 188, 235–246.10.1016/0014-4827(90)90165-7
  • Yardimci, H., Wang, X., Loveland, A. B., Tappin, I., Rudner, D. Z., Hurwitz, J., … Walter, J. C. (2012). Bypass of a protein barrier by a replicative DNA helicase. Nature, 492, 205–209.10.1038/nature11730

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.