462
Views
29
CrossRef citations to date
0
Altmetric
Research Articles

Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β42 monomer: insights from molecular dynamics simulations

&
Pages 663-678 | Received 30 Jul 2016, Accepted 31 Jan 2017, Published online: 28 Feb 2017

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25.10.1016/j.softx.2015.06.001
  • Alzheimer, A. (1907). Über eine eigenartige Erkankung der Hirnrinde [On an unusual illness of cerebral cortex]. Allgemeine Zeitschrift fur Psychiatrie und phychish–Gerichtliche Medizin, 64, 146–148.
  • Autiero, I., Langella, E., & Saviano, M. (2013). Insights into the mechanism of interaction between trehalose-conjugated beta-sheet breaker peptides and Aβ(1–42) fibrils by molecular dynamics simulations. Molecular BioSystems, 9, 2835–2841.10.1039/c3mb70235a
  • Bag, S., Tulsan, R., Sood, A., Cho, H., Redjeb, H., Zhou, W., … Török, M. (2015). Sulfonamides as multifunctional agents for Alzheimer’s disease. Bioorganic and Medicinal Chemistry Letters, 25, 626–630.10.1016/j.bmcl.2014.12.006
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences, 98, 10037–10041.10.1073/pnas.181342398
  • Bansal, S., Maurya, I. K., Yadav, N., Thota, C. K., Kumar, V., Tikoo, K., … Jain, R. (2016). C-terminal fragment, Aβ32–37, analogues protect against Aβ aggregation-induced toxicity. ACS Chemical Neuroscience, 7, 615–623.10.1021/acschemneuro.6b00006
  • Baweja, L., Balamurugan, K., Subramanian, V., & Dhawan, A. (2015). Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study. Journal of Molecular Graphics and Modeling, 61, 175–185.10.1016/j.jmgm.2015.07.007
  • Bellucci, L., Ardèvol, A., Parrinello, M., Lutz, H., Lu, H., Weidner, T., & Corni, S. (2016). The interaction with gold suppresses fiber-like conformations of the amyloid β (16–22) peptide. Nanoscale, 8, 8737–8748.10.1039/C6NR01539E
  • Benilova, I., Karran, E., & Strooper, B. D. (2012). The toxic Aβ oligomer and Alzheimer’s disease: An emperor in need of clothes. Nature Neuroscience, 15, 349–357.10.1038/nn.3028
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, R. J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684–3690.10.1063/1.448118
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981) Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces (pp. 331–342). Dordrecht: Reidel Publishing Company.
  • Berhanu, W. M., & Hansmann, U. H. E. (2012a). Side–chain hydrophobicity and the stability of Aβ16–22 aggregates. Protein Science, 21, 1837–1848.
  • Berhanu, W. M., & Hansmann, U. H. E. (2012b). Structure and dynamics of amyloid-β segmental polymorphisms. PLoS One, 7, e41479.10.1371/journal.pone.0041479
  • Berhanu, W. M., & Masunov, E. (2011). Molecular dynamic simulation of wild type and mutants of the polymorphic amyloid NNQNTF segments of elk prion: Structural stability and thermodynamic of association. Biopolymers, 95, 573–590.10.1002/bip.v95.9
  • Best, R. B., Buchete, N.-V., & Hummer, G. (2008). Are current molecular dynamics force fields too helical? Biophysical Journal, 95, L07–L09.10.1529/biophysj.108.132696
  • Broersen, K., Rousseau, F., & Schymkowitz, J. (2010). The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer’s disease: Oligomer size or conformation. Alzheimer’s Research & Therapy, 2, 12.10.1186/alzrt36
  • Bruce, N. J., Chen, D., Dastidar, S. G., Marks, G. E., Schein, C. H., & Bryce, R. A. (2010). Molecular dynamics simulations of Aβ fibril interactions with β-sheet breaker peptides. Peptides, 31, 2100–2108.10.1016/j.peptides.2010.07.015
  • Bywater, R. P. (2013). Protein folding: A problem with multiple solutions. Journal of Biomolecular Structure and Dynamics, 31, 351–362.10.1080/07391102.2012.703062
  • Chang, L.-K., Zhao, J.-H., Liu, H.-L., Wu, J. W., Chuang, C.-K., Liu, K.-T., … Ho, Y. (2010). The importance of steric zipper on the aggregation of the MVGGVV peptide derived from the amyloid β Peptide. Journal of Biomolecular Structure and Dynamics, 28, 39–50.10.1080/07391102.2010.10507342
  • Chen, H., Zhang, Y., Li, L., & Han, J. G. (2012). Probing ligand-binding modes and binding mechanisms of benzoxazole-based amide inhibitors with soluble epoxide hydrolase by molecular docking and molecular dynamics simulation. Journal of Physical Chemistry B, 116, 10219–10233.10.1021/jp304736e
  • Cohen, A. S., & Jones, L. A. (1991). Amyloid and amyloidosis. Current Opinion in Rheumatology, 3, 125–138.10.1097/00002281-199102000-00018
  • Cote, Y., Maisuradze, G. G., Delarue, P., Scheraga, H. A., & Senet, P. (2015). New insights into protein (Un)folding dynamics. The Journal of Physical Chemistry Letters, 6, 1082–1086.10.1021/acs.jpclett.5b00055
  • Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi, A. M., Temussi, P. A., & Picone, D. (2002). Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment. Similarity with a virus fusion domain. European Journal of Biochemistry, 269, 5642–5648.10.1046/j.1432-1033.2002.03271.x
  • Dalal, S., Mhashal, A., Kadoo, N., & Gaikwad, S. M. (2016). Functional stability and structural transitions of kallikrein: Spectroscopic and molecular dynamics studies. Journal of Biomolecular Structure and Dynamics, 35, 330–342.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.10.1063/1.464397
  • Daura, X., Gademann, K., Jaun, B., Seebach, D., van Gunsteren, W. F., & Mark, A. E. (1999). Peptide folding: When simulation meets experiment. Angewandte Chemie International Edition, 38, 236–240.10.1002/(ISSN)1521-3773
  • DeBolt, S. E., & Kollman, P. A. (1995). Investigation of structure, dynamics, and solvation in 1-octanol and its water-saturated solution: Molecular dynamics and free-energy perturbation studies. Journal of the American Chemical Society, 117, 5316–5340.10.1021/ja00124a015
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific.
  • Dhanavade, M. J., Parulekar, R. S., Kamble, S. A., & Sonawane, K. D. (2016). Molecular modeling approach to explore the role of cathepsin B from Hordeum vulgare in the degradation of Aβ peptides. Molecular BioSystems, 12, 162–168.10.1039/C5MB00718F
  • Du, W. J., Guo, J. J., Gao, M. T., Hu, S. Q., Dong, X. Y., Han, Y. F., … Sun, Y. (2015). Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Scientific Reports, 5, 7992.10.1038/srep07992
  • Duan, S., Guan, X., Lin, R., Liu, X., Yan, Y., Lin, R., … Gu, H. (2015). Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: A dual-target drug for the treatment of Alzheimer’s disease. Neurobiology of Aging, 36, 1792–1807.10.1016/j.neurobiolaging.2015.02.002
  • Dutta, M., & Mattaparthi, V. S. K. (2016). Inhibition of Aβ1–42 Peptide aggregation using short ss-oligonucleotide as polyions: An in silico approach. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2016.1189358
  • Essmann, U., Perera, M. L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577–8593.10.1063/1.470117
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. (2009). Gaussian 09, Revision E.01. Wallingford, CT: Gaussian,
  • Galimberti, D., & Scarpini, E. (2016). Emerging amyloid disease-modifying drugs for Alzheimer’s disease. Expert Opinion on Emerging Drugs, 21, 5–7.10.1517/14728214.2016.1146678
  • Ge, C., Du, J., Zhao, L., Wang, L., Liu, Y., Li, D., Yang, Y., … Chen, C. (2011). Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences, 108, 16968–16973.10.1073/pnas.1105270108
  • Gerben, S. R., Lemkul, J. A., Brown, A. M., & Bevan, D. R. (2014). Comparing atomistic molecular mechanics force fields for a difficult target: a case study on the Alzheimer’s amyloid β-peptide. Journal of Biomolecular Structure and Dynamics, 32, 1817–1832.10.1080/07391102.2013.838518
  • Goyal, B., Kumar, A., Srivastava, K. R., & Durani, S. (2016a). Computational scrutiny of the effect of N-terminal proline and residue stereochemistry in the nucleation of α-helix fold. RSC Advances, 6, 74162–74176.10.1039/C6RA10934A
  • Goyal, B., Kumar, A., Srivastava, K. R., & Durani, S. (2016b). Scrutiny of chain-length and N-terminal effects in α-helix folding: A molecular dynamics study on polyalanine peptides. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2016.1199972
  • Goyal, B., Patel, K., Srivastava, K. R., & Durani, S. (2015). De novo design of stereochemically-bent sixteen-residue β-hairpin as a hydrolase mimic. RSC Advances, 5, 105400–105408.10.1039/C5RA19015K
  • Goyal, B., Srivastava, K. R., Patel, K., & Durani, S. (2016). Modulation of β-hairpin peptide self-assembly: A twenty-residue poly-l β-hairpin modified rationally as a mixed-l,d hydrolase. ChemistrySelect, 5, 2050–2057.10.1002/slct.201600078
  • Goyal, D., Shuaib, S., Mann, S., & Goyal, B. (2017). Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: Potential therapeutics of Alzheimer’s disease. ACS Combinatorial Science, 19, 55–80.
  • Guan, L., Hao, Y., Chen, L., Wei, M. L., Jiang, Q., Liu, W. Y., … Qu, W. (2016). Synthesis and evaluation of neuroprotective 4-O-substituted chrysotoxine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. RSC Advances, 6, 22827–22838.10.1039/C5RA21313D
  • Guisasola, E. E. B., Andujar, S. A., Hubin, E., Broersen, K., Kraan, I. M., Méndez, L., … Enriz, R. D. (2015). New mimetic peptides inhibitors of Αβ aggregation. Molecular guidance for rational drug design. European Journal of Medicinal Chemistry, 95, 136–152.10.1016/j.ejmech.2015.03.042
  • Guisasola, E. E. B., Gutiérrez, L. J., Rodrigo, E. S., Garibotto, F. M., Andujar, S. A., Enriz, R. D., & Rodríguez, A. M. (2016). Pentameric models as alternative molecular targets for the design of new antiaggregant agents. Computational and Theoretical Chemistry, 1080, 56–65.10.1016/j.comptc.2016.02.002
  • van Gunsteren, W. F., & Berendsen, H. J. C. (1988). A leap-frog algorithm for stochastic dynamics. Molecular Simulation, 1, 173–185.10.1080/08927028808080941
  • van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P., Mark, A. E., … Tironi, I. G. (1996). Biomolecular simulation: The GROMOS96 manual and user guide (pp. 1–1042). Zürich: Vdf Hochschulverlag AG an der ETH Zürich.
  • Hajnic, M., Osorio, J. I., & Zagrovic, B. (2016). Interaction preferences between nucleobase mimetics and amino acids in aqueous solutions. Physical Chemistry Chemical Physics, 17, 21414–21422.
  • Han, B., Liu, Y., Ginzinger, S. W., & Wishart, D. S. (2011). SHIFTX2: Significantly improved protein chemical shift prediction. Journal of Biomolecular NMR, 50, 43–57.10.1007/s10858-011-9478-4
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.10.1002/(ISSN)1096-987X
  • Huey, R., Morris, G. M., Olson, A. J., & Goodsell, D. S. (2007). A semi empirical free energy force field with charge-based desolvation. Journal of Computational Chemistry, 28, 1145–1152.10.1002/(ISSN)1096-987X
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.10.1016/0263-7855(96)00018-5
  • Hunter, C. A., & Sanders, J. K. M. (1990). The nature of π–π interactions. Journal of the American Chemical Society, 11, 5525–5534.10.1021/ja00170a016
  • Ito, M., Johansson, J., Strömberg, R., & Nilsson, L. (2011). Unfolding of the amyloid β-peptide central helix: Mechanistic insights from molecular dynamics simulations. PLoS One, 6, e17587.10.1371/journal.pone.0017587
  • Jalkute, C. B., Barage, S. H., & Sonawane, K. D. (2015). Insight into molecular interactions of Aβ peptide and gelatinase from Enterococcus faecalis: A molecular modeling approach. RSC Advances, 5, 10488–10496.10.1039/C4RA09354B
  • Jani, V., Sonavane, U. B., & Joshi, R. (2011). Microsecond scale replica exchange molecular dynamic simulation of villin headpiece: An insight into the folding landscape. Journal of Biomolecular Structure and Dynamics, 28, 845–860.10.1080/07391102.2011.10508612
  • Joshi, R. R. (2013). Protein folding: Interplay of hydrophobic-hydrophilic forces? Journal of Biomolecular Structure and Dynamics, 31, 965–966.10.1080/07391102.2012.748530
  • Juneja, A., Ito, M., & Nilsson, L. (2013). Implicit solvent models and stabilizing effects of mutations and ligands on the unfolding of the amyloid β-peptide central helix. Journal of Chemical Theory and Computation, 9, 834–846.10.1021/ct300941v
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637.10.1002/(ISSN)1097-0282
  • Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., & Grzeschik, K. H. (1987). The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325, 733–736.10.1038/325733a0
  • Kikugawa, M., Tsutsuki, H., Ida, T., Nakajima, H., Ihara, H., & Sakamoto, T. (2015). Water-soluble ferulic acid derivatives improve amyloid-β-induced neuronal cell death and dysmnesia through inhibition of amyloid-β aggregation. Bioscience, Biotechnology, and Biochemistry, 80, 1–7.
  • Knecht, V., Mhwald, H., & Lipowsky, R. (2007). Conformational diversity of the fibrillogenic fusion peptide B18 in different environments from molecular dynamics simulations. The Journal of Physical Chemistry B, 111, 4161–4170.10.1021/jp0659204
  • Kumar, A., Srivastava, S., Tripathi, S., Singh, S. K., Srikrishna, S., & Sharma, A. (2016). Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 34, 1252–1263.10.1080/07391102.2015.1074943
  • Kumar, J., Namsechi, R., & Sim, V. L. (2015). Structure-based peptide design to modulate amyloid beta aggregation and reduce cytotoxicity. PLoS One, 10, e0129087.10.1371/journal.pone.0129087
  • Kumar, Y. C. S., Malviya, M., Chandra, J. N. N. S., Sadashiva, C. T., Kumar, C. S. A., Prasad, S. B. B., … Rangappa, K. S. (2008). Effect of novel N-aryl sulfonamide substituted 3-morpholino arecoline derivatives as muscarinic receptor 1 agonist in Alzheimer’s dementia models. Journal of Bioorganic and Medicinal Chemistry, 16, 5157–5163.10.1016/j.bmc.2008.03.019
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A, (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962.10.1021/ci500020m
  • Lee, J., Kwon, I., Jang, S. S., & Cho, A. E. (2016). Investigation of the effect of erythrosine B on amyloid beta peptide using molecular modeling. Journal of Molecular Modeling, 22, 92.10.1007/s00894-016-2960-x
  • Lemkul, J. A., & Bevan, D. R. (2010). Destabilizing Alzheimer’s Aβ42 protofibrils with morin: Mechanistic insights from molecular dynamics simulations. Biochemistry, 49, 3935–3946.10.1021/bi1000855
  • Lemkul, J. A., & Bevan, D. R. (2012). Morin inhibits the early stages of amyloid β-peptide aggregation by altering tertiary and quaternary interactions to produce ‘Off-pathway’ structures. Biochemistry, 51, 5990–6009.10.1021/bi300113x
  • Li, H., Luo, Y., Derreumaux, P., & Wei, G. (2011). Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s amyloid-β(16-22) peptide. Biophysical Journal, 101, 2267–2276.10.1016/j.bpj.2011.09.046
  • Li, W., Tang, Y., Liu, H., Cheng, J., Zhu, W., & Jiang, H. (2008). Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking. Proteins: Structure, Function, and Bioinformatics, 71, 938–949.10.1002/prot.v71:2
  • Lin, Y.-S., Bowman, G. R., Beauchamp, K. A., & Pande, V. S. (2012). Investigating how peptide length and a pathogenic mutation modify the structural ensemble of amyloid beta monomer. Biophysical Journal, 102, 315–324.10.1016/j.bpj.2011.12.002
  • Lin, Y.-S., & Pande, V. S. (2012). Effects of familial mutations on the monomer structure of Aβ42. Biophysical Journal, 103, L47–L49.10.1016/j.bpj.2012.11.009
  • Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306–317.10.1007/s008940100045
  • Liu, F.-F., Dong, X.-Y., He, L., Middelberg, A. P. J., & Sun, Y. (2011). Molecular insight into conformational transition of amyloid β-peptide 42 inhibited by (−)-epigallocatechin-3-gallate probed by molecular simulations. Journal of Physical Chemistry B, 115, 11879–11887.10.1021/jp202640b
  • Liu, F.-F., Liu, Z., Bai, S., Dong, X.-Y., & Sun, Y. (2012). Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations. The Journal of Chemical Physics, 136, 145101–145108.10.1063/1.3702195
  • Liu, G., Wei, Y., Gao, F., Yuan, S., & Liu, C. (2016). Origins of entropy change for the amphiphilic molecule in micellization: A molecular dynamics study. Physical Chemistry Chemical Physics, 18, 11357–11361.10.1039/C6CP01042C
  • López, L. C., Dos-Reis, S., Espargaró, A., Carrodeguas, H. A., Maddelein, M., Ventura, S., & Sancho, J. (2012). Discovery of novel inhibitors of amyloid β-peptide 1–42 aggregation. Journal of Medicinal Chemistry, 55, 9521–9530.10.1021/jm301186p
  • Lu, C., Guo, Y., Yan, J., Luo, Z., Luo, H. B., Yan, M., Huang, L., & Li, X. (2013). Design, synthesis, and evaluation of multitarget-directed resveratrol derivatives for the treatment of Alzheimer’s disease. Journal of Medicinal Chemistry, 56, 5843–5859.10.1021/jm400567s
  • Maatuk, N., & Samson, A. O. (2013). Modeling the binding mechanism of Alzheimer’s Aβ1-42 to nicotinic acetylcholine receptors based on similarity with snake α-neurotoxins. NeuroToxicology, 34, 236–242.10.1016/j.neuro.2012.09.007
  • Mager, P. P. (1997). Molecular simulation of the amyloid β-peptide Aβ (1–40) of Alzheimer’s disease. Molecular Simulation, 20, 201–222.
  • Mager, P. P., & Fischer, K. (2001). Simulation of the lipophilic and antigenic cores of the Aβ(1–42) peptide of Alzheimer’s disease. Molecular Simulation, 27, 237–242.10.1080/08927020108027949
  • Mager, P. P., Reinhardt, R., & Fischer, K. (2001). Molecular simulation to aid in the understanding of the Aβ(1–42) peptide of Alzheimer’s disease. Molecular Simulation, 26, 367–379.10.1080/08927020108024511
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., … Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: Version 1.0. Journal of Chemical Theory and Computation, 17, 4026–4037.10.1021/ct200196m
  • Massi, F., Peng, J. W., Lee, J. P., & Straub, J. E. (2001). Simulation study of the structure and dynamics of the Alzheimer’s amyloid peptide congener in solution. Biophysical Journal, 80, 31–44.10.1016/S0006-3495(01)75993-0
  • Mills, N. (2006). ChemDraw ultra 10.0. Journal of the American Chemical Society, 128, 13649–13650.10.1021/ja0697875
  • Minicozzi, V., Chiaraluce, R., Consalvi, V., Giordano, C., Narcisi, C., Punzi, P., … Morante, S. (2014). Computational and experimental studies on β-sheet breakers targeting Aβ1-40 fibrils. Journal of Biological Chemistry, 289, 11242–11252.10.1074/jbc.M113.537472
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.10.1002/(ISSN)1096-987X
  • Nag, S., Sarkar, B., Bandyopadhyay, A., Sahoo, B., Sreenivasan, V. K. A., Kombrabail, M., … Maiti, S. (2011). Nature of the amyloid-β monomer and the monomer–oligomer equilibrium. Journal of Biological Chemistry, 286, 13827–13833.10.1074/jbc.M110.199885
  • Nerelius, C., Sandegren, A., Sargsyan, H., Raunak, R., Leijonmarck, H., Chatterjee, U., … Johansson, J. (2009). α-helix targeting reduces amyloid-β peptide toxicity. Proceedings of the National Academy of Sciences, 106, 9191–9196.10.1073/pnas.0810364106
  • Ngo, S. T., & Li, M. S. (2012). Curcumin binds to Aβ1–40 peptides and fibrils stronger than ibuprofen and naproxen. Journal of Physical Chemistry B, 116, 10165–10175.10.1021/jp302506a
  • Ngo, S. T., & Li, M. S. (2013). Top-leads from natural products for treatment of Alzheimer's disease: Docking and molecular dynamics study. Molecular Simulation, 39, 279–291.10.1080/08927022.2012.718769
  • Nguyen, P., & Derreumaux, P. (2014). Understanding amyloid fibril nucleation and Aβ oligomer/drug interactions from computer simulations. Accounts of Chemical Research, 47, 603–611.10.1021/ar4002075
  • Novick, P. A., Lopes, D. H., Branson, K. M., Esteras-Chopo, A., Graef, I. A., Bitan, G., & Pande, V. S. (2012). Design of β-amyloid aggregation inhibitors from a predicted structural motif. Journal of Medicinal Chemistry, 55, 3002–3010.10.1021/jm201332p
  • Olubiyi, O. O., & Strodel, B. (2012). Structures of the amyloid β-peptides Aβ1–40 and Aβ1–42 as influenced by pH and a D-peptide. The Journal of Physical Chemistry B, 116, 3280–3291.10.1021/jp2076337
  • Patel, K., Goyal, B., Kumar, A., Kishore, N., & Durani, S. (2010). Cured of ‘Stickiness’, poly-l β-hairpin is promoted with ll-to-dd mutation as a protein and a hydrolase mimic. The Journal of Physical Chemistry B, 114, 16887–16893.10.1021/jp1062572
  • Peters, C., Fernandez-Perez, E. J., Burgos, C. F., Espinoza, M. P., Castillo, C., Urrutia, J. C., … Aguayo, L. G. (2013). Inhibition of amyloid beta-induced synaptotoxicity by a pentapeptide derived from the glycine zipper region of the neurotoxic peptide. Neurobiology of Aging, 34, 2805–2814.10.1016/j.neurobiolaging.2013.06.001
  • Plazinski, W., Plazinska, A., & Drach, M. (2016). Acyclic forms of aldohexoses and ketohexoses in aqueous and DMSO solutions: Conformational features studied using molecular dynamics simulations. Physical Chemistry Chemical Physics, 18, 9626–9635.10.1039/C6CP00809G
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., … Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29, 845–854.10.1093/bioinformatics/btt055
  • Qu, G., Xue, C., Zhang, M., Liang, S., Han, Y., & Ding, W. (2016). Molecular dynamics simulation of sulfobetaine-type zwitterionic surfactants at the decane/water interface: Structure, interfacial properties. Journal of Dispersion Science and Technology, 37, 1710–1717.10.1080/01932691.2015.1135400
  • Rosenman, D. J., Connors, C., Chen, W., Wang, C., & García, A. E. (2013). Aβ monomers transiently sample oligomers and fibril-like configurations: Ensemble characterization using a combined MD/NMR approach. Journal of Molecular Biology, 425, 3338–3359.10.1016/j.jmb.2013.06.021
  • Sakono, M., & Zako, T. (2010). Amyloid oligomers: Formation and toxicity of Aβ oligomers. Federation of European Biochemical Societies Journal, 277, 1348–1358.
  • dos Santos, E. S., Gritta, D. H. S., & de Almeida, J. S. (2015). Analysis of interactions between potent inhibitors of ATP sulfurylase via molecular dynamics. Molecular Simulation, 42, 605–610.
  • Sassi, P., Paolantoni, M., Cataliotti, R. S., Palombo, F., & Morresi, A. (2004). Water-alcohol mixtures: A spectroscopic study of the water saturated 1-octanol solution. The Journal of Physical Chemistry B, 108, 19557–19565.10.1021/jp046647d
  • Scrutton, N. S., & Raine, A. R. (1996). Cation-π bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Biochemical Journal, 319, 1–8.10.1042/bj3190001
  • Senguen, F. T., Doran, T. M., Anderson, E. A., & Nilsson, B. L. (2011). Clarifying the influence of core amino acid hydrophobicity, secondary structure propensity, and molecular volume on amyloid-β 16-22 self-assembly. Molecular BioSystems, 7, 497–510.10.1039/C0MB00210K
  • Shytle, R. D., Bickford, P. C., Rezai-zadeh, K., Hou, L., Zeng, J., Tan, J., … Alberte, R. S. (2009). Optimized turmeric extracts have potent anti-amyloidogenic effects. Current Alzheimer Research, 6, 564–571.10.2174/156720509790147115
  • da Silva, G. S., Figueirό, M., Tormena, C. F., Coelho, F., & Almeida, W. P. (2016). Effects of novel acylhydrazones derived from 4-quinolone on the acetylcholinesterase activity and Aβ42 peptide fibrils formation. Journal of Enzyme Inhibition and Medicinal Chemistry, 1, 1–7.
  • Solis, F. J., & Wets, J. B. (1981). Minimization by random search techniques. Mathematics of Operations Research, 6, 19–30.10.1287/moor.6.1.19
  • Sonavane, U. B., Ramadugu, S. K., & Joshi, R. R. (2008). Study of early events in the protein folding of villin headpiece using molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 26, 203–214.10.1080/07391102.2008.10507236
  • Soto, C., Branes, M. C., Alvarez, J., & Inestrosa, N. C. (1994). Structural determinants of the Alzheimer’s amyloid β-peptide. Journal of Neurochemistry, 63, 1191–1198.
  • Srivastava, K. R., Kumar, A., Goyal, B., & Durani, S. (2011). Stereochemistry and solvent role in protein folding: Nuclear magnetic resonance and molecular dynamics studies of poly-l and alternating-l, d homopolypeptides in dimethyl sulfoxide. The Journal of Physical Chemistry B, 115, 6700–6708.10.1021/jp200743w
  • Sun, N., Funke, S. A., & Willbold, D. A. (2012). Survey of peptides with effective therapeutic potential in Alzheimer’s disease rodent models or in human clinical studies. Mini Reviews in Medicinal Chemistry, 12, 388–398.10.2174/138955712800493942
  • Sun, Y., Qian, Z., & Wei, G. (2016). The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: An atomistic simulation study. Physical Chemistry Chemical Physics, 18, 12582–12591.10.1039/C6CP01014H
  • Tarus, B., Nguyen, P. H., Berthoumieu, O., Faller, P., Doig, A. J., & Derreumaux, P. (2015). Molecular structure of the NQTrp inhibitor with the Alzheimer Aβ1-28 monomer. European Journal of Medicinal Chemistry, 91, 43–50.10.1016/j.ejmech.2014.07.002
  • Tarus, B., Straub, J. E., & Thirumalai, D. (2006). Dynamics of Asp23−Lys28 salt-bridge formation in Aβ10-35 monomers. Journal of the American Chemical Society, 128, 16159–16168.10.1021/ja064872y
  • Tin, G., Mohamed, T., Gondora, N., Beazely, M. A., & Rao, P. P. N. (2015). Tricyclic phenothiazine and phenoselenazine derivatives as potential multi-targeting agents to treat Alzheimer’s disease. Medicinal Chemistry Communications, 6, 1930–1941.10.1039/C5MD00274E
  • Tjernberg, L. O., Lilliehook, C., Callaway, D. J., Naslund, J., Hahne, S., Thyberg, J., … Nordstedt, C. (1997). Controlling amyloid β-peptide fibril formation with protease-stable ligands. Journal of Biological Chemistry, 272, 12601–12605.10.1074/jbc.272.19.12601
  • Tjernberg, L. O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A. R., Thyberg, J., … Nordstedt, C. (1996). Arrest of β-amyloid fibril formation by a pentapeptide ligand. Journal of Biological Chemistry, 271, 8545–8548.10.1074/jbc.271.15.8545
  • Viet, M. H., Ngo, S. T., Lam, N. S., & Li, M. S. (2011). Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. The Journal of Physical Chemistry B, 115, 7433–7446.10.1021/jp1116728
  • Wang, C.-C., Huang, H.-B., Tsay, H.-J., Shiao, M.-S., Wu, W.-J., Cheng, Y.-C., & Lin, T.-H. (2012). Characterization of Aβ aggregation mechanism probed by congo red. Journal of Biomolecular Structure and Dynamics, 30, 160–169.10.1080/07391102.2012.677767
  • Wang, X., Sun, X., Kuang, G., Ågren, H., & Tu, Y. (2015). A theoretical study on the molecular determinants of the affibody protein ZAβ3 bound to an amyloid β peptide. Physical Chemistry Chemical Physics, 17, 16886–16893.10.1039/C5CP00615E
  • Wang, Q., Yu, X., Patal, K., Hu, R., Chuang, S., Zhang, G., & Zheng, J. (2013). Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chemical Neuroscience, 4, 1004–1015.10.1021/cn400051e
  • Wang, L., Zeng, R., Pang, X., Gu, Q., & Tan, W. (2015). The mechanisms of flavonoids inhibiting conformational transition of amyloid-β42 monomer: A comparative molecular dynamics simulation study. RSC Advances, 5, 66391–66402.10.1039/C5RA12328C
  • Watanabe, K., Nakamura, K., Akikusa, S., Okada, T., Kodaka, M., Konakahara, T., & Okuno, H. (2002). Inhibitors of fibril formation and cytotoxicity of β-amyloid peptide composed of KLVFF recognition element and flexible hydrophilic disrupting element. Biochemical and Biophysical Research Communications, 290, 121–124.10.1006/bbrc.2001.6191
  • Watanabe, K., Segawa, T., Nakamura, K., Kodaka, M., Konakahara, T., & Okuno, H. (2001). Identification of the molecular interaction site of amyloid β peptide by using a fluorescence assay. Journal of Peptide Research, 58, 342–346.10.1111/jpp.2001.58.issue-4
  • Wei, Y., Wang, H., Liu, G., Wang, Z., & Yuan, S. (2016). A molecular dynamics study on two promising green surfactant micelles of choline dodecyl sulfate and laurate. RSC Advances, 6, 84090–84097.10.1039/C6RA16536B
  • Weidemann, A., König, G., Bunke, D., Fischer, P., Salbaum, J. M., Masters, C. L., & Beyreuther, K. (1989). Differential brain expression of the Alzheimer’s amyloid precursor protein. Cell, 57, 115–126.10.1016/0092-8674(89)90177-3
  • Wolynes, P. G. (2015). Evolution, energy landscapes and the paradoxes of protein folding. Biochimie, 119, 218–230.10.1016/j.biochi.2014.12.007
  • Xia, Z., Zhu, Z., Zhu, J., & Zhou, R. (2009). Recognition mechanism of siRNA by viral p19 suppressor of RNA silencing: A molecular dynamics study. Biophysical Journal, 96, 1761–1769.10.1016/j.bpj.2008.11.047
  • Xie, G., Tian, W., Wei, T., & Liu, F. (2014). The neuroprotective effect of β-hydroxybutyrate on Aβ injected rat hippocampus in vivo and in Aβ-treated PC12 cells. Free Radical Research, 49, 139–150.
  • Xie, L., Luo, Y., Lin, D., Xi, W., Yang, X., & Wei, G. (2014). The molecular mechanism of fullerene-inhibited aggregation of Alzheimer’s β-amyloid peptide fragment. Nanoscale, 6, 9752–9762.10.1039/C4NR01005A
  • Xu, J., Ren, Y., & Li, J. (2013). Multiscale simulations of protein folding: Application to formation of secondary structures. Journal of Biomolecular Structure and Dynamics, 31, 779–787.10.1080/07391102.2012.709461
  • Xu, W., Wang, X.-B., Wang, Z.-M., Wu, J. J., Li, F., Wang, J., & Kong, L.-Y. (2016). Synthesis and evaluation of donepezil–ferulic acid hybrids as multi-target-directed ligands against Alzheimer’s disease. Medicinal Chemistry Communications, 7, 990–998.10.1039/C6MD00053C
  • Yang, Z., Ge, C., Liu, J., Chong, Y., Gu, Z., Jimenez-Cruz, C. A., … Zhou, R. (2015). Destruction of amyloid fibrils by graphene through penetration and extraction of peptides. Nanoscale, 7, 18725–18737.10.1039/C5NR01172H
  • Yang, C., Li, J., Li, Y., & Zhu, X. (2009). The effect of solvents on the conformations of Amyloid β-peptide (1–42) studied by molecular dynamics simulation. Journal of Molecular Structure: THEOCHEM, 895, 1–8.10.1016/j.theochem.2008.10.003
  • Yang, C., Zhu, X., Li, J., & Shi, R. (2010). Exploration of the mechanism for LPFFD inhibiting the formation of β-sheet conformation of Aβ1–42 in water. Journal of Molecular Modeling, 16, 813–821.10.1007/s00894-009-0594-y
  • Zhang, T., Xu, W., Mu, Y., & Derreumaux, P. (2014). Atomic and dynamic insights into the beneficial effect of the 1,4-naphthoquinon-2-yl-l-tryptophan inhibitor on Alzheimer’s Aβ1–42 dimer in terms of aggregation and toxicity. ACS Chemical Neuroscience, 5, 148–159.10.1021/cn400197x
  • Zhang, T., Zhang, J., Derreumaux, P., & Mu, Y. G. (2013). Molecular mechanism of the inhibition of EGCG on the Alzheimer Aβ1–42 dimer. Journal of Physical Chemistry B, 117, 3993–4002.10.1021/jp312573y
  • Zhao, H., & Caflisch, A. (2015). Molecular dynamics in drug design. European Journal of Medicinal Chemistry, 91, 4–14.10.1016/j.ejmech.2014.08.004
  • Zhao, J.-H., Liu, H.-L., Liu, Y.-F., Lin, H.-Y., Fang, H.-W., Ho, Y., & Tsai, W.-B. (2009). Molecular dynamics simulations to investigate the aggregation behaviors of the Aβ (17–42) oligomers. Journal of Biomolecular Structure and Dynamics, 26, 481–490.
  • Zhao, L. N., Chiu, S.-W., Benoit, J., Chew, L. Y., & Mu, Y. (2012). The effect of curcumin on the stability of Aβ dimers. The Journal of Physical Chemistry B, 116, 7428–7435.10.1021/jp3034209
  • Zhao, L. N., Mu, Y., & Chew, L. Y. (2013). Heme prevents amyloid beta peptide aggregation through hydrophobic interaction based on molecular dynamics simulation. Physical Chemistry Chemical Physics, 15, 14098–14106.10.1039/C3CP52354C
  • Zhou, Z.-L., Ho, Y., Liu, H.-L., Elumalai, P., & Chen, W.-H. (2015). Computer-aided discovery of novel non-peptide inhibitors against amyloid-beta (Aβ) peptide aggregation for treating Alzheimer’s disease. Molecular Simulation, 41, 622–632.10.12677/MOS.2014.31001
  • Zhuang, W., Sgourakis, N. G., Li, Z. Y., Garcia, A. E., & Mukamel, S. (2010). Discriminating early stage Aβ42 monomer structures using chirality-induced 2DIR spectroscopy in a simulation study. Proceedings of the National Academy of Sciences, 107, 15687–15692.10.1073/pnas.1002131107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.