309
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Complexes of DNA bases and Watson–Crick base pairs interaction with neutral silver Agn (n = 8, 10, 12) clusters: a DFT and TDDFT study

Pages 1050-1062 | Received 25 Dec 2016, Accepted 16 Mar 2017, Published online: 10 Apr 2017

References

  • Antoku, Y. (2007). (PhD thesis). Georgia Institute of Technology, Atlanta.
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652.10.1063/1.464913
  • Boyle, N. M. O., Tenderholt, A. L., & Langner, K. M. (2008). cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29, 839–845.10.1002/(ISSN)1096-987X
  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19, 553–566.10.1080/00268977000101561
  • Brovarets, O. O., & Hovorun, D. M. (2014a). DPT tautomerisation of the G·Asyn and A*·G*syn DNA mismatches: A QM/QTAIM combined atomistic investigation. Physical Chemistry Chemical Physics, 16, 9074–9085.10.1039/c4cp00488d
  • Brovarets, O. O., & Hovorun, D. M. (2014b). How does the long G.G* Watson–Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation. Physical Chemistry Chemical Physics, 16, 15886–15889.10.1039/C4CP01241K
  • Brovarets’, O. O., & Hovorun, D. M. (2015c). The nature of the transition mismatches with Watson–Crick architecture: the G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. Journal of Biomolecular Structure and Dynamics, 33, 925–945.10.1080/07391102.2014.924879
  • Brovarets’, O. O., & Hovorun, D. M. (2015d). Wobble↔Watson-Crick tautomeric transitions in the homo-purine DNA mismatches: a key to the intimate mechanisms of the spontaneous transversions. Journal of Biomolecular Structure and Dynamics, 33, 2710–2715.10.1080/07391102.2015.1077737
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013). DPT tautomerization of the long A∙A* Watson-Crick base pair formed by the amino and imino tautomers of adenine: combined QM and QTAIM investigation. Journal of Molecular Modeling, 19, 4223–4237.10.1007/s00894-013-1880-2
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014a). Does the tautomeric status of the adenine bases change upon the dissociation of the A*·Asyn Topal–Fresco DNA mismatch? A combined QM and QTAIM atomistic insight. Physical Chemistry Chemical Physics, 16, 3715–3725.10.1039/c3cp54708f
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014b). Is the DPT tautomerization of the long A.G Watson–Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. Journal of Computational Chemistry, 35, 451–466.10.1002/jcc.23515
  • Brovarets’, O. O., & Hovorun, D. M. (2015a). How many tautomerization pathways connect Watson–Crick-like G*·T DNA base mispair and wobble mismatches?. Journal of Biomolecular Structure and Dynamics, 33, 2297–2315.10.1080/07391102.2015.1046936
  • Brovarets’, O. O., & Hovorun, D. M. (2015b). Tautomeric transition between wobble A.C DNA base mispair and Watson–Crick-like A.C* mismatch: Microstructural mechanism and biological significance. Physical Chemistry Chemical Physics: PCCP, 17, 15103–15110.10.1039/C5CP01568E
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2015). DPT tautomerisation of the wobble guanine & thymine DNA base mispair is not mutagenic: QM and QTAIM arguments. Journal of Biomolecular Structure and Dynamics, 33, 674–689.10.1080/07391102.2014.897259
  • Burley, G. A., Gierlich, J., Mofid, M. R., Nir, H., Tal, S., Eichen, Y., & Carell, T. (2006). Directed DNA metallization. Journal of the American Chemical Society, 128, 1398–1399.10.1021/ja055517v
  • Calarco, T., Datta, A., Fedichev, P., Pazy, E., & Zoller, P. (2003). Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence. Physical Review A, 68, 012310.10.1103/PhysRevA.68.012310
  • Chen, W. Y., Shiang, Y. C., Li, C. L., Periasamy, A. P., & Chang, H. T. (2012). Chapter 12 (p. 287).
  • Choi, S., Dickson, R. M., & Yu, J. (2012). Developing luminescent silver nanodots for biological applications. Chemical Society Reviews, 41, 1867–1891.10.1039/C1CS15226B
  • Chrétien, S., Gordon, M. S., & Metiu, H. (2004a). Density functional study of the adsorption of propene on silver clusters, Agmq (m=1–5; q=0, +1). The Journal of Chemical Physics, 121, 9925–9930.10.1063/1.1809600
  • Chrétien, S., Gordon, M. S., & Metiu, H. (2004b). Binding of propene on small gold clusters and on Au(111): Simple rules for binding sites and relative binding energies. The Journal of Chemical Physics, 121, 3756–3766.10.1063/1.1769366
  • Chrétien, S., Gordon, M. S., & Metiu, H. (2004c). Density functional study of the adsorption of propene on mixed gold-silver clusters, AunAgm: Propensity rules for binding. The Journal of Chemical Physics, 121, 9931–9937.10.1063/1.1809601
  • Díez, I., & Ras, R. H. A. (2011). Fluorescent silver nanoclusters. Nanoscale, 3, 1963–1970.10.1039/c1nr00006c
  • Driehorst, T., O’Neill, P., Goodwin, P. M., Pennathur, S., & Fygenson, D. (2011). Distinct conformations of DNA-stabilized fluorescent silver nanoclusters revealed by electrophoretic mobility and diffusivity measurements. Langmuir, 27, 8923–8933.10.1021/la200837z
  • Elf, J., Li, G. W., & Xie, X. S. (2007). Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316, 1191–1194.10.1126/science.1141967
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Pople, J. A. (2009). Gaussian 09, Revision B.04. Pittsburgh, PA: Gaussian Inc.
  • Guo, Z., & Sadler, P. J. (1999). Metals in medicine. Angewandte Chemie International Edition, 38, 1512–1531.10.1002/(ISSN)1521-3773
  • Han, B., & Wang, E. (2011). Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids. Biosensors and Bioelectronics, 26, 2585–2589.10.1016/j.bios.2010.11.011
  • Han, B., & Wang, E. (2012). DNA-templated fluorescent silver nanoclusters. Analytical and Bioanalytical Chemistry, 402, 129–138.10.1007/s00216-011-5307-6
  • Harbich, W., Fedrigo, S., & Buttet, J. (1992). The optical absorption spectra of small silver clusters (n=5–11) embedded in argon matrices. Chemical Physics Letters, 195, 613–617.10.1016/0009-2614(92)85572-R
  • Hay, P. J. (2002). Theoretical studies of the ground and excited electronic states in cyclometalated phenylpyridine Ir(III) complexes using density functional theory. The Journal of Physical Chemistry A, 106, 1634–1641.10.1021/jp013949w
  • Kistenmacher, T. J., Rossi, M., & Marzilli, L. G. (1979). Crystal and molecular structure of (nitrato)(1-methylcytosine)silver(I): an unusual crosslinked polymer containing a heavy metal and a modified nucleic acid constituent. Inorganic Chemistry, 18, 240–244.10.1021/ic50192a007
  • Kryachko, E. S., & Remacle, F. (2005). Complexes of DNA bases and Watson−Crick Base pairs with small neutral gold clusters. The Journal of Physical Chemistry B, 109, 22746–22757.10.1021/jp054708h
  • Kumar, A., Mishra, P. C., & Suhai, S. (2006). Binding of gold clusters with DNA base pairs: A density functional study of neutral and anionic GC−Aun and AT−Aun (n = 4, 8) complexes. The Journal of Physical Chemistry A, 110, 7719–7727.10.1021/jp060932a
  • Kurita, N. K., Danilov, V. I., & Anisimov, V. M. (2005). The structure of Watson–Crick DNA base pairs obtained by MP2 optimization. Chemical Physics Letters, 404, 164–170.10.1016/j.cplett.2005.01.087
  • Lan, G. Y., Chen, W. Y., Chang, H. T., Lan, G. Y., Chen, W. Y., & Chang, H. T. (2011). Control of synthesis and optical properties of DNA templated silver nanoclusters by varying DNA length and sequence. RSC Advance, 1, 802–807.
  • Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Physical Review B, 37, 785–789.10.1103/PhysRevB.37.785
  • Lewis, F. D., Wu, T., Zhang, Y., Letsinger, R. L., Greenfield, S. R., & Wasielewski, M. R. (1997). Distance-dependent electron transfer in DNA hairpins. Science, 277, 673–676.10.1126/science.277.5326.673
  • Liu, S. X., Bokinsky, G., Walter, N. G., & Zhuang, X. W. (2007). Dissecting the multistep reaction pathway of an RNA enzyme by single-molecule kinetic “fingerprinting”. Proceedings of the National Academy of Sciences, 104, 12634–12639.10.1073/pnas.0610597104
  • Liu, C. S., & Schuster, G. B. (2003). Base sequence effects in radical cation migration in duplex DNA:  Support for the Polaron-Like hopping model. Journal of the American Chemical Society, 125, 6098–6102.10.1021/ja029333h
  • Lopez-Acevedo, O., Clayborne, P. A., & Häkkinen, H. (2011). Electronic structure of gold, aluminum, and gallium superatom complexes. Physical Review B, 84, 035434.10.1103/PhysRevB.84.035434
  • Myong, S., Bruno, M. M., Pyle, A. M., & Ha, T. (2007). Spring-loaded mechanism of DNA unwinding by hepatitis C Virus NS3 Helicase. Science, 317, 513–516.10.1126/science.1144130
  • Nakatani, K., Sando, S., & Saito, I. (2001). Scanning of guanine–guanine mismatches in DNA by synthetic ligands using surface plasmon resonance. Nature Biotechnology, 19, 51–55.10.1038/83505
  • Neidig, M. L., Sharma, J., Yeh, H. C., Martinez, J. S., Conradson, S. D., & Shreve, A. P. (2011). Ag K-Edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: Insight into the structural origins of emission tuning by DNA sequence variations. Journal of the American Chemical Society, 133, 11837–11839.10.1021/ja202797w
  • O’Neill, P. R., Gwinn, E. G., & Fygenson, D. K. (2011). UV excitation of DNA stabilized Ag cluster fluorescence via the DNA bases. The Journal of Physical Chemistry C, 115, 24061–24066.10.1021/jp206110r
  • O’Neill, P. R., Velazquez, L. R., Dunn, D. G., Gwinn, E. G., & Fygenson, D. K. (2009). Hairpins with poly-C loops stabilize four types of fluorescent AgN:DNA. The Journal of Physical Chemistry C, 113, 4229–4233.10.1021/jp809274m
  • Pal, S., Varghese, R., Deng, Z., Zhao, Z., Kumar, A., Yan, H., & Liu, Y. (2011). Site-specific synthesis and in situ immobilization of fluorescent silver nanoclusters on DNA nanoscaffolds by use of the tollens reaction. Angewandte Chemie International Edition, 50, 4176–4179.10.1002/anie.v50.18
  • Parr, R. G., Szentpály, L. V., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121, 1922–1924.10.1021/ja983494x
  • Patel, S. A., Richards, C. I., Hsiang, J. C., & Dickson, R. M. (2008). Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. Journal of the American Chemical Society, 130, 11602–11603.10.1021/ja804710r
  • Petty, J. T., Fan, C. Y., Story, S. P., Sengupta, B., St. John Iyer, A. S., Prudowsky, Z., & Dickson, R. M. (2010). DNA encapsulation of 10 silver atoms producing a bright, modulatable, near-infrared-emitting cluster. The Journal of Physical Chemistry Letters, 1, 2524–2529.10.1021/jz100817z
  • Petty, J. T., Fan, C. Y., Story, S. P., Sengupta, B., Sartin, M., Hsiang, J. C., … Dickson, R. M. (2011). Optically enhanced, near-IR, silver cluster emission altered by single base changes in the DNA template. The Journal of Physical Chemistry B, 115, 7996–8003.10.1021/jp202024x
  • Petty, J. T., Sergev, O. O., Ganguly, M., Rankine, I. J., Chevrier, D. M., & Zhang, P. (2016). A segregated, partially oxidized, and compact Ag 10 cluster within an encapsulating DNA host. Journal of the American Chemical Society, 138, 3469–3477.10.1021/jacs.5b13124
  • Petty, J. T., Zheng, J., Hud, N. V., & Dickson, R. M. (2004). DNA-templated Ag nanocluster formation. Journal of the American Chemical Society, 126, 5207–5212.10.1021/ja031931o
  • Peyser-Capadona, L., Zheng, J., González, J. I., Lee, T. H., Patel, S. A., & Dickson, R. M. (2005). Nanoparticle-free single molecule anti-stokes raman spectroscopy. Physical Review Letters, 94, 058301.10.1103/PhysRevLett.94.058301
  • Rabilloud, F., Harb, M., & Simon, D. (2009). Optical absorption of silver clusters: A study of the effective potential core size. Chemical Physics Letters, 476, 186–190.
  • Richards, C. I., Choi, S., Hsiang, J.-C., Antoku, Y., Vosch, T., Bongiorno, A., … Dickson, R. M. (2008). Oligonucleotide-stabilized Ag nanocluster fluorophores. Journal of the American Chemical Society, 130, 5038–5039.10.1021/ja8005644
  • Ritchie, C. M., Johnsen, K. R., Kiser, J. R., Antoku, Y., Dickson, R. M., & Petty, J. T. (2007). Ag nanocluster formation using a cytosine oligonucleotide template. The Journal of Physical Chemistry C, 111, 175–181.10.1021/jp0648487
  • Roeffaers, M. B. J., De Cremer, G., Uji-i, H., Muls, B. F., Sels, B. F., Jacobs, P. A., … De Vos, D. E. (2007). Single-molecule fluorescence spectroscopy in (bio)catalysis. Proceedings of the National Academy of Sciences, 104, 12603–12609.10.1073/pnas.0610755104
  • Samijlenko, S. P., Krechkivska, O. M., Kosach, D. A., & Hovorun, D. M. (2004). Transitions to high tautomeric states can be induced in adenine by interactions with carboxylate and sodium ions: DFT calculation data. Journal of Molecular Structure, 708, 97–104.10.1016/j.molstruc.2004.05.034
  • Samijlenko, S. P., Yurenko, Y. P., Stepanyugin, A. V., & Hovorun, D. M. (2010). Tautomeric equilibrium of uracil and thymine in model protein-nucleic acid contacts. Spectroscopic and quantum chemical approach. The Journal of Physical Chemistry B, 114, 1454–1461.10.1021/jp909099a
  • Schultz, D., Gardner, K., Oemrawsingh, S. S. R., Markeevi, N., Olsson, K., Debord, M., … Gwinn, E. (2013). Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Advanced Materials, 25, 1521–4095.
  • Sengupta, B., Ritchie, C. M., Buckman, J. G., Johnsen, K. R., Goodwin, P. M., & Petty, J. T. (2008). Base-directed formation of fluorescent silver clusters. The Journal of Physical Chemistry C, 112, 18776–18782.10.1021/jp804031v
  • Shang, L., Dong, S., & Nienhaus, G. U. (2011). Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today, 6, 401–418.10.1016/j.nantod.2011.06.004
  • Shiang, Y. C., Huang, C. C., Chen, W. Y., Chen, P. C., & Chang, H. T. (2012). Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. Journal of Materials Chemistry, 22, 12972–12982.10.1039/c2jm30563a
  • Shukla, M. K., Dubey, M., Zakar, E., & Leszczynski, J. (2009). DFT investigation of the interaction of gold nanoclusters with nucleic acid base guanine and the Watson–Crick guanine-cytosine base pair. The Journal of Physical Chemistry C, 113, 3960–3966.10.1021/jp808622y
  • Soto-Verdugo, V., Metiu, H., & Gwinn, E. (2010). The properties of small Ag clusters bound to DNA bases. The Journal of Chemical Physics, 132, 195102–195112.10.1063/1.3419930
  • Su, Y. T., Lan, G. Y., Chen, W. Y., & Chang, H. T. (2010). Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Analytical Chemistry, 82, 8566–8572.10.1021/ac101659d
  • Sun, H., Zhang, S., & Sun, Z. (2015). Applicability of optimal functional tuning in density functional calculations of ionization potentials and electron affinities of adenine– thymine nucleobase pairs and clusters. Physical Chemistry Chemical Physics, 17, 4337–4345.10.1039/C4CP05470A
  • Vasilescu, D., & Adrian-Scotto, M. (2010). From Democritus to Schrödinger: A reflection on quantum molecular modeling. Structural Chemistry, 21, 1289–1314.10.1007/s11224-010-9665-z
  • Vasilescu, D., Adrian-Scotto, M., Fadiel, A., & Hamza, A. (2010). Ab initio study of alkylation of guanine-cytosine base pair by sulfur and nitrogen mustards. Journal of Biomolecular Structure & Dynamics, 27, 465–476.10.1080/07391102.2010.10507331
  • Vosch, T., Antoku, Y., Hsiang, J. C., Richards, C. I., Gonzalez, J. I., & Dickson, R. M. (2007). Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proceedings of the National Academy of Sciences, 104, 12616–12621.10.1073/pnas.0610677104
  • Wales, D. J., & Doye, J. P. K. (1997). Global optimization by Basin-Hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. The Journal of Physical Chemistry A, 101, 5111–5116. 10.1021/jp970984n
  • Wales, D. J., & Scheraga, H. A. (1999). Global optimization of clusters, crystals, and biomolecules. Science, 285, 1368–1372.10.1126/science.285.5432.1368
  • Yu, Junhua, Patel, Sandeep A., & Dickson, R. M. (2007). In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angewandte Chemie International Edition, 46, 2028–2030.10.1002/(ISSN)1521-3773
  • Zhang, J. G., Xu, S. Q., & Kumacheva, E. (2005). Photogeneration of fluorescent silver nanoclusters in polymer microgels. Advanced Materials, 17, 2028–2030.
  • Zheng, J., & Dickson, R. M. (2008). Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. Journal of the American Chemical Society, 124, 13982–13985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.