321
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Recognition dynamics of dopamine to human Monoamine oxidase B: role of Leu171/Gln206 and conserved water molecules in the active site cavity

, , , &
Pages 1439-1462 | Received 24 Feb 2017, Accepted 24 Apr 2017, Published online: 24 May 2017

References

  • Bach, A. W., Lan, N. C., Johnson, D. L., Abell, C. W., Bembenek, M. E., Kwan, S. W., … Shih, J. C. (1988). cDNA cloning of human liver monoamine oxidase A and B: Molecular basis of differences in enzymatic properties. Proceedings of the National Academy of Sciences, 85, 4934–4938.10.1073/pnas.85.13.4934
  • Bairagya, H. R., Mishra, D. K., Mukhopadhyay, B. P., & Sekar, K. (2013). Conserved water-mediated recognition and dynamics of NAD + (carboxamide group) to hIMPDH enzyme: Water mimic approach toward the design of isoform-selective inhibitor. Journal of Biomolecular Structure and Dynamics, 32, 1248–1262. doi:10.1080/07391102.2013.812982
  • Bairagya, H. R., Mukhopadhyay, B. P., & Sekar, K. (2009). An insight to the dynamics of conserved water molecular triad in IMPDH II (human): Recognition of cofactor and substrate to catalytic Arg 322. Journal of Biomolecular Structure and Dynamics, 27(2), 1–2. doi:10.1080/07391102.2009.10507304.
  • Balamurugan, B., Roshan, M. N. A. M., Shaahul Hameed, B., Sumathi, K., Senthilkumar, R., Udayakumar, A., … Sekar, K. (2007). PSAP: Protein structure analysis package. Journal of Applied Crystallography, 40, 773–777. doi:10.1107/S0021889807021875
  • Banerjee, A., Dasgupta, S., Mukhopadhyay, B. P., & Sekar, K. (2015). The putative role of some conserved water molecules in the structure and function of human transthyretin. Acta Crystallographica Section D: Biological Crystallography, 71, 2248–2266. doi:10.1107/S1399004715016004
  • Bera, I., Marathe, M. V., Payghan, P. V., & Ghoshal, N. (2017). Identification of Novel hits as highly prospective dual agonists for mu and kappa opioid receptors: an integrated in silico approach. Journal of Biomolecular Structure and Dynamics, 1102,1–62. https://doi.org/10.1080/07391102.2016.1275810
  • Berman, H. M., Westbrook, J. D., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242. doi:10.1093/nar/28.1.235
  • Binda, C., Aldeco, M., Geldenhuys, W. J., Tortorici, M., Mattevi, A., & Edmondson, D. E. (2012). Molecular insights into human Monoamine oxidase B inhibition by the glitazone antidiabetes drugs. ACS Medicinal Chemistry Letters, 3, 39–42. doi:10.1021/ml200196p
  • Binda, C., Aldeco, M., Mattevi, A., & Edmondson, D. E. (2011). Interactions of Monoamine oxidases with the antiepileptic drug zonisamide: specificity of inhibition and structure of the human Monoamine oxidase B complex. Journal of Medicinal Chemistry, 54, 909–912. doi:10.1021/jm101359c
  • Binda, C., Hubálek, F., Li, M., Herzig, Y., Sterling, J., Edmondson, D. E., & Mattevi, A. (2004). Crystal structures of Monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class. Journal of Medicinal Chemistry, 47, 1767–1774. doi:10.1021/jm031087c
  • Binda, C., Hubálek, F., Li, M., Herzig, Y., Sterling, J., Edmondson, D. E., & Mattevi, A. (2005). Binding of rasagiline-related inhibitors to human Monoamine oxidases: A kinetic and crystallographic analysis. Journal of Medicinal Chemistry, 48, 8148–8154. doi:10.1021/jm0506266
  • Binda, C., Li, M., Hubalek, F., Restelli, N., Edmondson, D. E., & Mattevi, A. (2003). Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proceedings of the National Academy of Sciences, 100, 9750–9755. doi:10.1073/pnas.1633804100
  • Binda, C., Newton-Vinson, P., Hubálek, F., Edmondson, D. E., & Mattevi, A. (2002). Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nature Structural Biology, 9, 22–26. doi:10.1038/nsb732
  • Binda, C., Wang, J., Pisani, L., Caccia, C., Carotti, A., Salvati, P., … Mattevi, A. (2007). Structures of human Monoamine oxidase B complexes with selective noncovalent inhibitors: Safinamide and coumarin analogs. Journal of Medicinal Chemistry, 50, 5848–5852. doi:10.1021/jm070677y
  • Bonivento, D., Milczek, E. M., McDonald, G. R., Binda, C., Holt, A., Edmondson, D. E., & Mattevi, A. (2010). Potentiation of ligand binding through cooperative effects in Monoamine oxidase B. Journal of Biological Chemistry, 285, 36849–36856. doi:10.1074/jbc.M110.169482
  • Borstnar, R., Repic, M., Kamerlin, S. C. L., Vianello, R., & Mavri, J. (2012). Computational study of the pK(a) values of potential catalytic residues in the active site of Monoamine oxidase B. Journal of Chemical Theory and Computation, 8, 3864–3870. doi:10.1021/Ct300119u
  • Brandl, M., Weiss, M. S., Jabs, A., Sühnel, J., & Hilgenfeld, R. (2001). C-h⋯π-interactions in proteins. Journal of Molecular Biology, 307, 357–377. doi:10.1006/jmbi.2001.4473
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4, 187–217. doi:10.1002/jcc.540040211
  • Chaplin, M. (2006). Do we underestimate the importance of water in cell biology? Nature Reviews Molecular Cell Biology, 7, 861–866. doi:10.1038/nrm2021
  • Chelli, R., Gervasio, F. L., Procacci, P., & Schettino, V. (2002). Stacking and T-shape competition in aromatic–aromatic amino acid interactions. Journal of the American Chemical Society, 124, 6133–6143. doi:10.1039/b711844a
  • Daeffler, K. N. M., Lester, H. A., & Dougherty, D. A. (2012). Functionally important aromatic–aromatic and sulfur−π interactions in the D2 dopamine receptor. Journal of the American Chemical Society, 134, 14890–14896. doi:10.1021/ja304560x
  • Domino, E. F., & Sampath Khanna, S. (1976). Decreased blood platelet MAO activity in unmedicated chronic schizophrenic patients. American Journal of Psychiatry, 133, 323–326. doi:10.1176/ajp.133.3.323
  • Edmondson, D. E., Mattevi, A., Binda, C., Li, M., & Hubalek, F. (2004). Structure and mechanism of Monoamine oxidase. Current Medicinal Chemistry, 11, 1983–1993. doi:10.2174/0929867043364784
  • Esteban, G., Allan, J., Samadi, A., Mattevi, A., Unzeta, M., Marco-Contelles, J., … Ramsay, R. R. (2014). Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer’s disease. Biochimica et Biophysica Acta – Proteins and Proteomics, 1844, 1104–1110. doi:10.1016/j.bbapap.2014.03.006
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron, 36, 3219–3228. doi:10.1016/0040-4020(80)80168-2
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS  Molecular docking. Nucleic acids research, , 39, 1–144.
  • Guex, N., & Peitsch, M. C. (1997). SWISS-model and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18, 2714–2723. doi:10.1002/elps.1150181505
  • Gullingsrud, J., Kosztin, D., & Schulten, K. (2001). Structural determinants of MscL gating studied by molecular dynamics simulations. Biophysical Journal, 80, 2074–2081. doi:10.1016/S0006-3495(01)76181-4
  • Huang, X., & Zhan, C.-G. (2007). How dopamine transporter interacts with dopamine: Insights from molecular modeling and simulation. Biophysical Journal, 93, 3627–3639. doi:10.1529/biophysj.107.110924
  • Hubalek, F., Binda, C., Khalil, A., Li, M., Mattevi, A., Castagnoli, N., & Edmondson, D. E. (2005). Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human Monoamine oxidase B by specific reversible inhibitors. Journal of Biological Chemistry, 280, 15761–15766. doi:10.1074/jbc.M500949200
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VDM: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38, NaN, 27–28. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jain, A., Ramanathan, V., & Sankararamakrishnan, R. (2009). Lone pair ⋯ π interactions between water oxygens and aromatic residues: Quantum chemical studies based on high-resolution protein structures and model compounds. Protein Science, 18, 595–605. doi:10.1002/pro.67
  • Johnston, J. P. (1968). Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochemical Pharmacology, 17, 1285–1297. doi:10.1016/0006-2952(68)90066-X
  • Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., … Schulten, K. (1999). NAMD2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics, 151, 283–312. doi:10.1006/jcph.1999.6201
  • Kalgutkar, A. S., Dalvie, D. K., Castagnoli, N., & Taylor, T. J. (2001). Interactions of nitrogen-containing xenobiotics with Monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chemical Research in Toxicology, 14, 1139–1162. https://doi.org/10.1021/tx010073b
  • Kanaujia, S., & Sekar, K. (2009). Structural and functional role of water molecules in bovine pancreatic phospholipase A2: A data-mining approach. Acta Crystallographica Section D, 65, 74–84. doi:10.1107/s0907444908039292
  • Li, M., Binda, C., Mattevi, A., & Edmondson, D. E. (2006). Functional role of the ‘aromatic cage’ in human monoamine oxidase B: Structures and catalytic properties of Tyr435 mutant proteins. Biochemistry, 45, 4775–4784. doi:10.1021/bi051847g
  • Macindoe, G., Mavridis, L., Venkatraman, V., Devignes, M. D., & Ritchie, D. W. (2010). HexServer: An FFT based protein docking server powered by graphics processors, 38(7), 1–6. doi:10.1093/nar/gkq311
  • MacKerell, A., Bashford, D., Bellott, M., Dunbrack, R., Evanseck, J., Field, M., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102, 3586–3616. doi:10.1021/jp973084f
  • Meyer, J., Ginovart, N., Boovariwala, A., Sagrati, S., Hussey, D., Garcia, A., … Praschak-rieder, N. (2006). Elevated Monoamine oxidase a levels in the brain. Archives of General Psychiatry, 63, 1209–1216. doi:10.1001/archpsyc.63.11.1209
  • Milczek, E. M., Binda, C., Rovida, S., Mattevi, A., & Edmondson, D. E. (2011). The ‘gating’ residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition. FEBS Journal, 278, 4860–4869. doi:10.1111/j.1742-4658.2011.08386.x
  • Mishra, D. K., Bairagya, H. R., & Mukhopadhyay, B. P. (2013). Role of conserved water molecular triad in the recognition of IMP, NAD + with Asp 274, Asn 303, Arg 322, and Asp 364 in both the isoform of hIMPDH. Journal of Biomolecular Structure and Dynamics, 31, 111. https://doi.org/10.1080/07391102.2013.786414
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791. doi:10.1002/jcc.21256
  • Nandi, T. K., Bairagya, H. R., Mishra, D. K., Mukhopadhyay, B. P., & Banerjee, A. (2012). Structural and putative functional role of conserved water molecular cluster in the X-ray structures of plant thiol proteases: A molecular dynamics simulation study. Journal of Chemical Crystallography, 42, 1105–1118. doi:10.1007/s10870-012-0364-z
  • Nishihira, J., & Tachikawa, H. (1999). Theoretical evaluation of a model of the catalytic triads of serine and cysteine proteases by ab initio molecular orbital calculation. Journal of Theoretical Biology, 196(4), 513–519. doi:10.1006/jtbi.1998.0851
  • Plevin, M. J., Bryce, D. L., & Boisbouvier, J. (2010). Direct detection of CH/π interactions in proteins. Nature Chemistry, 2, 466–471. doi:10.1038/nchem.650
  • Raddatz, R., Savic, S. L., Bakthavachalam, V., Lesnick, J., Jasper, J. R., McGrath, C. R., … Lanier, S. M. (2000). Imidazoline-binding domains on monoamine oxidase B and subpopulations of enzyme. The Journal of Pharmacology and Experimental Therapeutics, 292, 1135–1145. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10688633
  • Salmas, R. E., Stein, M., Yurtsever, M., & Seeman, P. (2016). The signaling pathway of dopamine D2 receptor (D2R) activation using normal mode analysis (NMA) and the construction of universal pharmacophore models for D2R inhibitors. Journal of Biomolecular Structure and Dynamics, 1102, 1–9. https://doi.org/10.1080/07391102.2016.1206487
  • Salmas, R. E., Yurtsever, M., & Durdagi, S. (2016). Atomistic molecular dynamic simulations of typical and atypical anti-psychotic drugs at the dopamine D2 receptor (D2R) elucidates their inhibition mechanism. Journal of Biomolecular Structure and Dynamics, 1102. https://doi.org/10.1080/07391102.2016.1159986
  • Schildkraut, J. J., Herzog, J. M., Orsulak, P. J., Edelman, S. E., Shein, H. M., & Frazier, S. H. (1976). Reduced platelet monoamine oxidase activity in a subgroup of schizophrenic patients. The American Journal of Psychiatry, 133, 438–440. doi:10.1176/ajp.133.4.438
  • Schneidman-duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking, 33, 363–367. doi:10.1093/nar/gki481
  • Smolin, N., & Winter, R. (2008). Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: A molecular dynamics computer simulation study. The Journal of Physical Chemistry B, 112, 997–1006. doi:10.1021/jp076440v
  • Sumathi, K., Ananthalakshmi, P., Roshan, M. N. A. M., & Sekar, K. (2006). 3dSS: 3D structural superposition. Nucleic Acids Research, 34, 10–15.https://doi.org/10.1093/nar/gkl036
  • Tipton, K. F., Boyce, S., O’Sullivan, J., Davey, G. P., & Healy, J. (2004). Monoamine oxidases: Certainties and uncertainties. Current Medicinal Chemistry, 11, 1965–1982. doi:10.2174/0929867043364810
  • Trott, O., & Olson, A. J. (2010). Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461. doi:10.1002/jcc.21334
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., … Lopes, P. (2010). CHARMM general force field (CGenFF): A force field for drug – like molecules compatible with the CHARMM all ­ atom additive biological force fields. Journal of computational chemistry, 31, 671–690. https://doi.org/10.1002/jcc.21367
  • Vianello, R., Repič, M., & Mavri, J. (2012). How are biogenic amines metabolized by Monoamine oxidases? European Journal of Organic Chemistry, 36, 7057–7065. doi:10.1002/ejoc.201201122
  • Wang, K. H., Penmatsa, A., & Gouaux, E. (2015). Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature, 521, 322–327. doi:10.1038/nature14431
  • Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., … Weinerl, P. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. Society, 106, 765–784. https://doi.org/10.1021/ja00315a051
  • Wu, H. F., Chen, K., & Shih, J. C. (1993). Site-directed mutagenesis of monoamine oxidase A and B: role of cysteines. Molecular Pharmacology, 43, 888–893. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8316221
  • Xie, W., Wang, M., Li, A., & Xu, S. (2016). Molecular Dynamics Simulation of D-Benzedrine Transmitting through Molecular Channels within. Journal of Biomolecular Structure and Dynamics, 1102, 1–13. https://doi.org/10.1080/07391102.2016.1190947
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32, 2359–2368. doi:10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.