386
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Improvising 5-HT7R homology model for design of high affinity ligands: model validation with docking, embrace minimization, MM-GBSA, and molecular dynamic simulations

, , , , &
Pages 2475-2494 | Received 21 Dec 2016, Accepted 18 Jul 2017, Published online: 09 Aug 2017

References

  • Bhattacharya, S., Salomon-Ferrer, R., Lee, S., & Vaidehi, N. (2016). Conserved mechanism of conformational stability and dynamics in G-protein-coupled receptors. Journal of Chemical Theory and Computation, 12, 5575–5584. doi:10.1021/acs.jctc.6b00618
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., … Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, 252–258. doi:10.1093/nar/gku340
  • Bjarnadóttir, T. K., Gloriam, D. E., Hellstrand, S. H., Kristiansson, H., Fredriksson, R., & Schiöth, H. B. (2006). Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics, 88, 263–273. doi:10.1016/j.ygeno.2006.04.001
  • Buhot, M. C. (1997). Serotonin receptors in cognitive behaviors. Current Opinion in Neurobiology, 7, 243–254. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/914275610.1016/S0959-4388(97)80013-X
  • Canale, V., Kurczab, R., Partyka, A., Satała, G., Witek, J., Jastrzębska-Więsek, M., … Zajdel, P. (2015). Towards novel 5-HT7 versus 5-HT1A receptor ligands among LCAPs with cyclic amino acid amide fragments: Design, synthesis, and antidepressant properties. Part II. European Journal of Medicinal Chemistry, 92, 202–211. doi:10.1016/j.ejmech.2014.12.041
  • Chakravarty, S., Godbole, S., Zhang, B., Berger, S., & Sanchez, R. (2008). Systematic analysis of the effect of multiple templates on the accuracy of comparative models of protein structure. BMC Structural Biology, 8, 31. doi:10.1186/1472-6807-8-31
  • Chaturvedi, S., Kaul, A., Yadav, N., Singh, B., & Mishra, A. K. (2013). Synthesis, docking and preliminary in vivo evaluation of serotonin dithiocarbamate as novel SPECT neuroimaging agent. MedChemComm, 4, 1006–1014. doi:10.1039/C3MD00044C
  • Chaudhari, R., Heim, A. J., & Li, Z. (2015). Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions. Journal of Computer-Aided Molecular Design, 29, 413–420. doi:10.1007/s10822-014-9823-2
  • D. E. Shaw Research, New York, NY. (2013). Desmond molecular dynamics system, version 3.1. New York, NY: Schrödinger, LLC.
  • Demirkaya, K., Akgün, Ö. M., Şenel, B., Torun, Z. Ö., Seyrek, M., Lacivita, E., … Doğrul, A. (2016). Selective 5-HT7 receptor agonists LP 44 and LP 211 elicit an analgesic effect on formalin-induced orofacial pain in mice. Journal of Applied Oral Science, 24, 218–222. doi:10.1590/1678-775720150563
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., … Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47, 1739–1749. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15027866
  • Gandhimathi, A., & Sowdhamini, R. (2016). Molecular modelling of human 5-hydroxytryptamine receptor (5-HT2A) and virtual screening studies towards the identification of agonist and antagonist molecules. Journal of Biomolecular Structure and Dynamics, 34, 952–970. doi:10.1080/07391102.2015.1062802
  • Graf, M., Jakus, R., Kantor, S., Levay, G., & Bagdy, G. (2004). Selective 5-HT1A and 5-HT7 antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neuroscience Letters, 359, 45–48. doi:10.1016/j.neulet2004.01.072
  • Hagan, J. J., Price, G. W., Jeffrey, P., Deeks, N. J., Stean, T., Piper, D., … Thomas, D. R. (2000). Characterization of SB-269970-A, a selective 5-HT7 receptor antagonist. British Journal of Pharmacology, 130, 539–548. doi:10.1038/sj.bjp.0703357
  • Halgren, T. (2007). New method for fast and accurate binding-site identification and analysis. Chemical Biology & Drug Design, 69, 146–148. doi:10.1111/j.1747-0285.2007.00483.x
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47, 1750–1759. doi:10.1021/jm030644s
  • Hoyer, D., Clarke, D. E., Fozard, J. R., Hartig, P. R., Martin, G. R., Mylecharane, E. J., … Humphrey, P. P. (1994). International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacological Reviews, 46, 157–203. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7938165
  • Impellizzeri, A. A. R., Pappalardo, M., Basile, L., Manfra, O., Andressen, K. W., Krobert, K. A., … Guccione, S. (2015). Identification of essential residues for binding and activation in the human 5-HT7(a) serotonin receptor by molecular modeling and site-directed mutagenesis. Frontiers in Behavioral Neuroscience, 9, 1–12. doi:10.3389/fnbeh.2015.00092
  • Kołaczkowski, M., Marcinkowska, M., Bucki, A., Pawłowski, M., Mitka, K., Jaśkowska, J., … Bienkowski, P. (2014). Novel arylsulfonamide derivatives with 5-HT6/5-HT7 receptor antagonism targeting behavioral and psychological symptoms of dementia. Journal of Medicinal Chemistry, 57, 4543–4557. doi:10.1021/jm401895u
  • Kołaczkowski, M., Nowak, M., Pawłowski, M., & Bojarski, A. J. (2006). Receptor-based pharmacophores for serotonin 5-HT7R antagonists-implications to selectivity. Journal of Medicinal Chemistry, 49, 6732–6741. doi:10.1021/jm060300c
  • Kurczab, R., & Bojarski, A. J. (2013). New strategy for receptor-based pharmacophore query construction: a case study for 5-HT7 receptor ligands. Journal of Chemical Information and Modeling, 53, 3233–3243. doi:10.1021/ci4005207
  • Larsson, P., Wallner, B., Lindahl, E., & Elofsson, A. (2008). Using multiple templates to improve quality of homology models in automated homology modeling. Protein Science, 17, 990–1002. doi:10.1110/ps.073344908
  • Leung, E., Walsh, L. K. M., Pulido-Rios, M. T., & Eglen, R. M. (1996). Characterization of putative 5-ht7 receptors mediating direct relaxation in Cynomolgus monkey isolated jugular vein. British Journal of Pharmacology, 117, 926–930. Retrieved form https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1909429/pdf/brjpharm00094-0163.pdf10.1111/bph.1996.117.issue-5
  • López-Rodrı́guez, M. L., Porras, E., Benhamú, B., Ramos, J. A., Morcillo, M. J., & Lavandera, J. L. (2000). First pharmacophoric hypothesis for 5-HT7 antagonism. Bioorganic & Medicinal Chemistry Letters, 10, 1097–100. Retrieved form https://www.ncbi.nlm.nih.gov/pubmed/1084322610.1016/S0960-894X(00)00166-9
  • López-Rodríguez, M. L., Porras, E., Morcillo, M. J., Benhamú, B., Soto, L. J., Lavandera, J. L., … Pardo, L. (2003). Optimization of the pharmacophore model for 5-HT7R antagonism. Design and synthesis of new naphtholactam and naphthosultam derivatives. Journal of Medicinal Chemistry, 46, 5638–5650. doi:10.1021/jm030841r
  • Matthys, A., Haegeman, G., Van Craenenbroeck, K., & Vanhoenacker, P. (2011). Role of the 5-HT7 receptor in the central nervous system: From current status to future perspectives. Molecular Neurobiology, 43, 228–253. doi:10.1007/s12035-011-8175-3
  • Medina, R. A., Sallander, J., Benhamú, B., Porras, E., Campillo, M., Pardo, L., & López-Rodríguez, M. L. (2009). Synthesis of new serotonin 5-HT7 receptor ligands. Determinants of 5-HT7/5-HT1A receptor selectivity. Journal of Medicinal Chemistry, 52, 2384–2392. doi:10.1021/jm8014553
  • Meneses, A. (2004). Effects of the 5-HT7 receptor antagonists SB-269970 and DR-4004 in autoshaping Pavlovian/instrumental learning task. Behavioural Brain Research, 155, 275–282. doi:10.1016/j.bbr.2004.04.026
  • Monti, J. M., Leopoldo, M., & Jantos, H. (2008). The serotonin 5-HT7 receptor agonist LP-44 microinjected into the dorsal raphe nucleus suppresses REM sleep in the rat. Behavioural Brain Research, 191, 184–189. doi:10.1016/j.bbr.2008.03.025
  • Paila, Y. D., Tiwari, S., Sengupta, D., & Chattopadhyay, A. (2011). Molecular modeling of the human serotonin(1A) receptor: role of membrane cholesterol in ligand binding of the receptor. Molecular BioSystems, 7, 224–234. doi:10.1016/j.bbr.2008.03.025
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1399061710.1016/S0022-2836(63)80023-6
  • Rataj, K., Witek, J., Mordalski, S., Kosciolek, T., & Bojarski, A. J. (2014). Impact of template choice on homology model efficiency in virtual screening. Journal of Chemical Information and Modeling, 54, 1661–1668. doi:10.1021/ci500001f
  • Salmas, R. E., Yurtsever, M., & Durdagi, S. (2015). Investigation of inhibition mechanism of chemokine receptor CCR5 by micro-second molecular dynamics simulations. Scientific Reports, 5, 39. doi:10.1038/srep13180
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27, 221–234. doi:10.1007/s10822-013-9644-8
  • Sato, M., & Hirokawa, T. (2014). Extended template-based modeling and evaluation method using consensus of binding mode of GPCRs for virtual screening. Journal of Chemical Information and Modeling, 54, 3153–3161. doi:10.1021/ci500499j
  • Schmidt, T., Bergner, A., & Schwede, T. (2014). Modelling three-dimensional protein structures for applications in drug design. Drug Discovery Today, 19, 890–897. doi:10.1016/j.drudis.2013.10.027
  • Shahlaei, M., Madadkar-Sobhani, A., Fassihi, A., & Saghaie, L. (2011). Exploring a model of a chemokine receptor/ligand complex in an explicit membrane environment by molecular dynamics simulation: The human CCR1 receptor. Journal of Chemical Information and Modeling, 51, 2717–2730. doi:10.1021/ci200261f
  • Sleight, A. J., Carolo, C., Petit, N., Zwingelstein, C., & Bourson, A. (1995). Identification of 5-hydroxytryptamine7 receptor binding sites in rat hypothalamus: Sensitivity to chronic antidepressant treatment. Molecular Pharmacology, 47, 99–103. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7838138
  • Sokkar, P., Mohandass, S., & Ramachandran, M. (2011). Multiple templates-based homology modeling enhances structure quality of AT1 receptor: Validation by molecular dynamics and antagonist docking. Journal of Molecular Modeling, 17, 1565–1577. doi:10.1007/s00894-010-0860-z
  • Terrón, J. A. (2002). Is the 5-HT7 receptor involved in the pathogenesis and prophylactic treatment of migraine? European Journal of Pharmacology, 439, 1–11. Retrieved from http://www.sciencedirect.com/science/article/pii/S001429990201436X10.1016/S0014-2999(02)01436-X
  • Thomas, D. R., & Hagan, J. J. (2004). 5-HT7 receptors. Current Drug Targets – CNS & Neurological Disorders, 3, 81–90. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1496524610.2174/1568007043482633
  • Varin, T., Gutiérrez-de-Terán, H., Castro, M., Brea, J., Fabis, F., Dauphin, F., … Rodrigo, J. (2009). Phe369(7.38) at human 5-HT7 receptors confers interspecies selectivity to antagonists and partial agonists. British Journal of Pharmacology, 159, 1069–1081. doi:10.1111/j.1476-5381.2009.00481.x
  • Vermeulen, E. S., Smeden, M. V., Schmidt, A. W., Sprouse, J. S., Wikström, H. V., & Grol, C. J. (2004). novel 5-HT7 receptor inverse agonists. Synthesis and molecular modeling of arylpiperazine- and 1,2,3,4-tetrahydroisoquinoline-based arylsulfonamides. Journal of Medicinal Chemistry, 47, 5451–5466. doi:10.1021/jm049743b
  • Vyas, V. K., Ukawala, R. D., Ghate, M., & Chintha, C. (2012). Homology modeling a fast tool for drug discovery: Current perspectives. Indian Journal of Pharmaceutical Sciences, 74, 1–17. doi:10.4103/0250-474x.102537

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.