129
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Interactive association between RhoA transcriptional signaling inhibitor, CCG1423 and human serum albumin: Biophysical and in silico studies

, , , &
Pages 2495-2507 | Received 19 Jun 2017, Accepted 20 Jul 2017, Published online: 18 Aug 2017

References

  • Abou-Zied, O. K., & Al-Shihi, O. I. (2008). Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Journal of the American Chemical Society, 130, 10793–10801.10.1021/ja8031289
  • Bal, W., Sokolowska, M., Kurowska, E., & Faller, P. (2013). Binding of transition metal ions to albumin: Sites, affinities and rates. Biochimica et Biophysica Acta (BBA) – General Subjects, 1830, 5444–5455.10.1016/j.bbagen.2013.06.018
  • Berde, C. B., Hudson, B. S., Simoni, R. D., & Sklar, L. A. (1979). Human serum albumin. Spectroscopic studies of binding and proximity relationships for fatty acids and bilirubin. Journal of Biological Chemistry, 254, 391–400.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.10.1093/nar/28.1.235
  • Bi, S., Ding, L., Tian, Y., Song, D., Zhou, X., Liu, X., & Zhang, H. (2004). Investigation of the interaction between flavonoids and human serum albumin. Journal of Molecular Structure, 703, 37–45.10.1016/j.molstruc.2004.05.026
  • Boettner, B., & Aelst, L. V. (2002). The role of Rho GTPases in disease development. Gene, 286, 155–174.10.1016/S0378-1119(02)00426-2
  • Brodersen, R., Sjödin, T., & Sjöholm, I. (1977). Independent binding of ligands to human serum albumin. Journal of Biological Chemistry, 252, 5067–5072.
  • Cacita, N., & Nikolaou, S. (2016). Studying the interaction between trinuclear ruthenium complexes and human serum albumin by means of fluorescence quenching. Journal of Luminescence, 169, 115–120.10.1016/j.jlumin.2015.08.066
  • Celej, M. S., Montich, G. G., & Fidelio, G. D. (2003). Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Science, 12, 1496–1506.10.1110/(ISSN)1469-896X
  • Chen, Y. H., Yang, J. T., & Martinez, M. (1972). Determination of the secondary structure of proteins by circular dichroism and optical rotatory dispersion. Biochemistry, 11, 4120–4131.10.1021/bi00772a015
  • Dutt, P., Jaffe, A. B., Merdek, K. D., Hall, A., & Toksoz, D. (2004). Gαz inhibits serum response factor-dependent transcription by inhibiting Rho signaling. Molecular Pharmacology, 66, 1508–1516.10.1124/mol.104.002949
  • Evelyn, C. R., Wade, S. M., Wang, Q., Wu, M., Iniguez-Lluhi, J. A., Merajver, S. D., & Neubig, R. R. (2007). CCG-1423: A small-molecule inhibitor of RhoA transcriptional signaling. Molecular Cancer Therapeutics, 6, 2249–2260.10.1158/1535-7163.MCT-06-0782
  • Feroz, S. R., Mohamad, S. B., Bakri, Z. S. D., Malek, S. N. A., & Tayyab, S. (2013). Probing the interaction of a therapeutic flavonoid, pinostrobin with human serum albumin: Multiple spectroscopic and molecular modeling investigations. PLoS ONE, 8, e76067.10.1371/journal.pone.0076067
  • Feroz, S. R., Mohamad, S. B., Bujang, N., Malek, S. N. A., & Tayyab, S. (2012). Multispectroscopic and molecular modeling approach to investigate the interaction of flavokawain B with human serum albumin. Journal of Agriculture and Food Chemistry, 60, 5899–5908.10.1021/jf301139 h
  • Flora, K., Brennan, J. D., Baker, G. A., Doody, M. A., & Bright, F. V. (1998). Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. Biophysical Journal, 75, 1084–1096.10.1016/S0006-3495(98)77598-8
  • Gokara, M., Kimavath, G. B., Podile, A. R., & Subramanyam, R. (2015). Differential interactions and structural stability of chitosan oligomers with human serum albumin and α-1-glycoprotein. Journal of Biomolecular Structure and Dynamics, 33, 196–210.10.1080/07391102.2013.868321
  • Goodsell, D. S., Morris, G. M., & Olson, A. J. (1996). Automated docking of flexible ligands: Applications of autodock. Journal of Molecular Recognition, 9, 1–5.10.1002/(ISSN)1099-1352
  • Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science, 279, 509–514.10.1126/science.279.5350.509
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 1–17.
  • Hill, C. S., Wynne, J., & Treisman, R. (1995). The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell, 81, 1159–1170.10.1016/S0092-8674(05)80020-0
  • Kabir, M. Z., Tee, W. V., Mohamad, S. B., Alias, Z., & Tayyab, S. (2016). Interaction of an anticancer drug, gefitinib with human serum albumin: Insights from fluorescence spectroscopy and computational modeling analysis. RSC Advances, 6, 91756–91767.10.1039/C6RA12019A
  • Kabir, M. Z., Tee, W. V., Mohamad, S. B., Alias, Z., & Tayyab, S. (2017). Comprehensive insight into the binding of sunitinib, a multi-targeted anticancer drug to human serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 181, 254–263.10.1016/j.saa.2017.03.059
  • Karthikeyan, S., Bharanidharan, G., Kesherwani, M., Mani, K. A., Srinivasan, N., Velmurugan, D., … Ganesan, S. (2016). Insights into the binding of thiosemicarbazone derivatives with human serum albumin: Spectroscopy and molecular modelling studies. Journal of Biomolecular Structure and Dynamics, 34, 1264–1281.
  • Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta, 1751, 119–139.10.1016/j.bbapap.2005.06.005
  • Kragh-Hansen, U. (1985). Relations between high-affinity binding sites of markers for binding regions on human serum albumin. Biochemical Journal, 225, 629–638.10.1042/bj2250629
  • Kragh-Hansen, U. (1991). Octanoate binding to the indole- and benzodiazepine-binding region of human serum albumin. Biochemical Journal, 273, 641–644.10.1042/bj2730641
  • Kragh-Hansen, U. (2013). Molecular and practical aspects of the enzymatic properties of human serum albumin and of albumin–ligand complexes. Biochimica et Biophysica Acta, 1830, 5535–5544.10.1016/j.bbagen.2013.03.015
  • Kragh-Hansen, U., Chuang, V. T. G., & Otagiri, M. (2002). Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biological and Pharmaceutical Bulletin, 25, 695–704.10.1248/bpb.25.695
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). New York, NY: Springer.10.1007/978-0-387-46312-4
  • Lee, Y. J., & Hirose, M. (1992). Partially folded state of the disulfide-reduced form of human serum albumin as an intermediate for reversible denaturation. Journal of Biological Chemistry, 267, 14753–14758.
  • Li, Y., Chen, C., Zhang, C., Duan, J., Yao, H., & Wei, Q. (2017). Probing the binding interaction of AKR with human serum albumin by multiple fluorescence spectroscopy and molecular modeling. Journal of Biomolecular Structure and Dynamics, 35, 1189–1199.
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.10.1002/(ISSN)1096-987X
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.10.1002/jcc.v30:16
  • Oliveira, R. S. D., Boffo, E. F., Reis, F. C. C., Nikolaou, S., Andriani, K. F., Caramori, G. F., & Doro, F. G. (2016). A ruthenium polypyridyl complex with the antihypertensive drug valsartan: Synthesis, theoretical calculations and interaction studies with human serum albumin. Ployhedron, 114, 232–241.10.1016/j.poly.2015.12.029
  • Painter, L., Harding, M. M., & Beeby, P. J. (1998). Synthesis and interaction with human serum albumin of the first 3,18-disubstituted derivative of bilirubin. Journal of Chemical Society, Perkin Transactions, 1, 3041–3044.10.1039/a803429j
  • Peters, T. (1996). All about albumin: Biochemistry, genetics, and medical applications. San Diego, CA: Academic Press.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Cough, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.10.1002/(ISSN)1096-987X
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20, 3096–3102.10.1021/bi00514a017
  • Sahai, E., & Marshall, C. J. (2002). Rho–GTPases and cancer. Nature Reviews Cancer, 2, 133–142.10.1038/nrc725
  • Sancataldo, G., Vetri, V., Fodera, V., Cara, G. D., Militello, V., & Leone, M. (2014). Oxidation enhances human serum albumin thermal stability and changes the routes of amyloid fibril formation. PLoS ONE, 9, e84552.10.1371/journal.pone.0084552
  • Shamsi, A., Ahmed, A., & Bano, B. (2017). Probing the interaction of anticancer drug temsirolimus with human serum albumin: Molecular docking and spectroscopic insight. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2017.1326320
  • Sudlow, G., Birkett, D. J., & Wade, D. N. (1975). The characterization of two specific drug binding sites on human serum albumin. Molecular Pharmacology, 11, 824–832.
  • Tanaka, F., Forster, L. S., Pal, P. K., & Rupley, J. A. (1975). The circular dichroism of lysozyme. Journal of Biological Chemistry, 250, 6977–6982.
  • Trnkova, L., Bousova, I., Stankova, V., & Drsata, J. (2011). Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques. Journal of Molecular Structure, 985, 243–250.10.1016/j.molstruc.2010.11.001
  • Twine, S. M., Gore, M. G., Morton, P., Fish, B. C., Lee, A. G., & East, J. M. (2003). Mechanism of binding of warfarin enantiomers to recombinant domains of human albumin. Archives of Biochemistry and Biophysics, 414, 83–90.10.1016/S0003-9861(03)00173-5
  • Ware, W. R. (1962). Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process. The Journal of Physical Chemistry, 66, 455–458.10.1021/j100809a020
  • Watanabe, H., Kragh-Hansen, U., Tanase, S., Nakajou, K., Mitarai, M., Iwao, Y., … Otagiri, M. (2001). Conformational stability and warfarin-binding properties of human serum albumin studied by recombinant mutants. Biochemical Journal, 357, 269–274.10.1042/bj3570269
  • Zhang, G., & Ma, Y. (2013). Mechanistic and conformational studies on the interaction of food dye amaranth with human serum albumin by multispectroscopic methods. Food Chemistry, 136, 442–449.10.1016/j.foodchem.2012.09.026
  • Zhang, G., Zhao, N., & Wang, L. (2011a). Probing the binding of vitexin to human serum albumin by multispectroscopic techniques. Journal of Luminescence, 131, 880–887.10.1016/j.jlumin.2010.12.018
  • Zhang, G., Zhao, N., & Wang, L. (2011b). Fluorescence spectrometric studies on the binding of puerarin to human serum albumin using warfarin, ibuprofen and digitoxin as site markers with the aid of chemometrics. Journal of Luminescence, 131, 2716–2724.10.1016/j.jlumin.2011.07.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.