414
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Titanium dioxide nanoparticles preferentially bind in subdomains IB, IIA of HSA and minor groove of DNA

, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Pages 2530-2542 | Received 18 May 2017, Accepted 24 Jul 2017, Published online: 10 Aug 2017

References

  • Aggarwal, P., Hall, J. B., McLeland, C. B., Dobrovolskaia, M. A., & McNeil, S. E. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews, 61, 428–437. doi:10.1016/j.addr.2009.03.009
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular biology of the cell (5th ed., Vol. 36). Hoboken, NJ: Wiley Subscription Services, A Wiley Company.
  • Ali, M. S., Al-Lohedan, H. A., Atta, A. M., Ezzat, A. O., & Al-Hussain, S. A. A. (2015). Interaction of human serum albumin with silver nanoparticles functionalized with polyvinylthiol. Journal of Molecular Liquids, 204, 248–254. doi:10.1016/j.molliq.2015.01.032
  • Arys, A., Philippart, C., Dourov, N., He, Y., Le, Q. T., & Pireaux, J. J. (1998). Analysis of titanium dental implants after failure of osseointegration: Combined histological, electron microscopy, and X-ray photoelectron spectroscopy approach. Journal of Biomedical Materials Research, 43, 300–312.10.1002/(ISSN)1097-4636
  • Baig, M. H., Rizvi, S. M., Shakil, S., Kamal, M. A., & Khan, S. (2014). A neuroinformatics study describing molecular interaction of cisplatin with acetylcholinesterase: a plausible cause for anticancer drug induced neurotoxicity. CNS & Neurological Disorders–Drug Targets, 13, 265–270.10.2174/18715273113126660143
  • Benesi, H. A., & Hildebrand, J. H. (1949). A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 71, 2703–2707. doi:10.1021/ja01176a030
  • Bohren, C. F., & Huffman, D. R. (2007). Absorption and scattering by an arbitrary particle absorption and scattering of light by small particles (pp. 57–81). Weinheim: Wiley-VCH Verlag GmbH.10.1002/9783527618156.ch3
  • Brien, W. W., Salvati, E. A., Betts, F., Bullough, P., Wright, T., Rimnac, C., … Garvin, K. (1992). Metal levels in cemented total hip arthroplasty. A comparison of well-fixed and loose implants. Clinical Orthopaedics and Related Research, 276, 66–74.
  • Casals, E., Pfaller, T., Duschl, A., Oostingh, G. J., & Puntes, V. (2010). Time evolution of the nanoparticle protein corona. ACS Nano, 4, 3623–3632. doi:10.1021/nn901372t
  • Cedervall, T., Lynch, I., Foy, M., Berggård, T., Donnelly, S. C., Cagney, G., … Dawson, K. A. (2007). detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angewandte Chemie International Edition, 46, 5754–5756. doi:10.1002/anie.200700465
  • Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., … Linse, S. (2007). Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences, 104, 2050–2055. doi:10.1073/pnas.0608582104
  • Chen, Y. H., Yang, J. T., & Martinez, H. M. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry, 11, 4120–4131.10.1021/bi00772a015
  • Chithrani, B. D., & Chan, W. C. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 7, 1542–1550. doi:10.1021/nl070363y
  • Cui, F. L., Fan, J., Li, J. P., & Hu, Z. D. (2004). Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: Investigation by fluorescence spectroscopy. Bioorganic & Medicinal Chemistry, 12, 151–157.10.1016/j.bmc.2003.10.018
  • Cunningham, B. W., Orbegoso, C. M., Dmitriev, A. E., Hallab, N. J., Sefter, J. C., & McAfee, P. C. (2002). The effect of titanium particulate on development and maintenance of a posterolateral spinal arthrodesis: An in vivo rabbit model. Spine (Phila Pa 1976), 27, 1971–1981.10.1097/00007632-200209150-00004
  • Dawson, K. A., Salvati, A., & Lynch, I. (2009). Nanotoxicology: Nanoparticles reconstruct lipids. Nature Nanotechnology, 4, 84–85. doi:10.1038/nnano.2008.426
  • Deng, Z. J., Liang, M., Monteiro, M., Toth, I., & Minchin, R. F. (2011). Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology, 6, 39–44. doi:10.1038/nnano.2010.250
  • Ehrenberg, M. S., Friedman, A. E., Finkelstein, J. N., Oberdörster, G., & McGrath, J. L. (2009). The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials, 30, 603–610. doi:10.1016/j.biomaterials.2008.09.050
  • Ellsworth, D. E., Verhulst, D., Spitler, T. M., & Sabacky, B. J. (2000). Titanium nanoparticles move to the marketplace. Chemical Innovation, 30, 20–35.
  • Foroozandeh, P., & Aziz, A. A. (2015). Merging worlds of nanomaterials and biological environment: Factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Research Letters, 10, 1. doi:10.1186/s11671-015-0922-3
  • Gabbay, E. J., Grier, D., Fingerle, R. E., Reimer, R., Levy, R., Pearce, S. W., & Wilson, W. D. (1976). Interaction specificity of the anthracyclines with deoxyribonucleic acid. Biochemistry, 15, 2062–2070.10.1021/bi00655a006
  • Gratton, S. E., Ropp, P. A., Pohlhaus, P. D., Luft, J. C., Madden, V. J., Napier, M. E., & DeSimone, J. M. (2008). The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences, 105, 11613–11618. doi:10.1073/pnas.0801763105
  • Hemmateenejad, B., & Yousefinejad, S. (2013). Interaction study of human serum albumin and ZnS nanoparticles using fluorescence spectrometry. Journal of Molecular Structure, 1037, 317–322. doi:10.1016/j.molstruc.2013.01.009
  • Hu, Y. J., Liu, Y., Shen, X. S., Fang, X.-Y., & Qu, S. S. (2005). Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. Journal of Molecular Structure, 738, 143–147. doi:10.1016/j.molstruc.2004.11.062
  • Jeng, E. S., Barone, P. W., Nelson, J. D., & Strano, M. S. (2007). Hybridization kinetics and thermodynamics of dna adsorbed to individually dispersed single-walled carbon nanotubes. Small., 3, 1602–1609. doi:10.1002/smll.200700141
  • Jiang, W., Kim, B. Y., Rutka, J. T., & Chan, W. C. (2008). Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 3, 145–150. doi:10.1038/nnano.2008.30
  • Jin, C. Y., Zhu, B. S., Wang, X. F., & Lu, Q. H. (2008). Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chemical Research in Toxicology, 21, 1871–1877. doi:10.1021/tx800179f
  • Lacerda, S. H., Park, J. J., Meuse, C., Pristinski, D., Becker, M. L., Karim, A., & Douglas, J. F. (2010). Interaction of gold nanoparticles with common human blood proteins. ACS Nano, 4, 365–379. doi:10.1021/nn9011187
  • Lakowicz, J. R. (2006). Quenching of fluorescence. In J. R. Lakowicz (Ed.), Principles of fluorescence spectroscopy (pp. 277–330). Boston, MA: Springer US.10.1007/978-0-387-46312-4
  • Lakowicz, J. R. (2013). Principles of fluorescence spectroscopy. Boston: Springer US.
  • Li, D., Zhu, J., Jin, J., & Yao, X. (2007). Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and modeling. Journal of Molecular Structure, 846, 34–41. doi:10.1016/j.molstruc.2007.01.020
  • Love, S. A., Maurer-Jones, M. A., Thompson, J. W., Lin, Y. S., & Haynes, C. L. (2012). Assessing nanoparticle toxicity. Annual Review of Analytical Chemistry, 5, 181–205. doi:10.1146/annurev-anchem-062011-143134
  • Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., & Dawson, K. A. (2008). Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences, 105, 14265–14270. doi:10.1073/pnas.0805135105
  • Lynch, I., & Dawson, K. A. (2008). Protein-nanoparticle interactions. Nano Today, 3, 40–47. doi:10.1016/S1748-0132(08)70014-8
  • Mahmoudi, M., Lynch, I., Ejtehadi, M. R., Monopoli, M. P., Bombelli, F. B., & Laurent, S. (2011). Protein−nanoparticle interactions: Opportunities and challenges. Chemical Reviews, 111, 5610–5637. doi:10.1021/cr100440g
  • Mahmoudi, M., Sant, S., Wang, B., Laurent, S., & Sen, T. (2011). Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 63, 24–46. doi:10.1016/j.addr.2010.05.006
  • Mahmoudi, M., Shokrgozar, M. A., Sardari, S., Moghadam, M. K., Vali, H., Laurent, S., & Stroeve, P. (2011). Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale, 3, 1127–1138. doi:10.1039/c0nr00733a
  • Manivel, A., Sivakumar, R., Anandan, S., & Ashokkumar, M. (2012). Ultrasound-assisted synthesis of hybrid phosphomolybdate-polybenzidine containing silver nanoparticles for electrocatalytic detection of chlorate, bromate and iodate ions in aqueous solutions. Electrocatalysis, 3, 22–29. doi:10.1007/s12678-011-0072-z
  • Mariam, J., Dongre, P. M., & Kothari, D. C. (2011). Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. Journal of Fluorescence, 21, 2193–2199. doi:10.1007/s10895-011-0922-3
  • Miller, J. N. (1979). Recent advances in molecular luminescence analysis. Proceedings of the Analytical Division of the Chemical Society, 16, 203–208.
  • Monopoli, M. P., Walczyk, D., Campbell, A., Elia, G., Lynch, I., Baldelli Bombelli, F. B., & Dawson, K. A. (2011). Physical−chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society, 133, 2525–2534. doi:10.1021/ja107583h
  • Monti, S., Ottani, S., Manoli, F., Manet, I., Scagnolari, F., Zambelli, B., & Marconi, G. (2009). Chiral recognition of 2-(3-benzoylphenyl)propionic acid (ketoprofen) by serum albumin: An investigation with microcalorimetry, circular dichroism and molecular modelling. Physical Chemistry Chemical Physics, 11, 9104–9113. doi:10.1039/b906021a
  • Mu, Q., Jiang, G., Chen, L., Zhou, H., Fourches, D., Tropsha, A., & Yan, B. (2014). Chemical basis of interactions between engineered nanoparticles and biological systems. Chemical Reviews, 114, 7740–7781. doi:10.1021/cr400295a
  • Nasir, Z., Shakir, M., Wahab, R., Wahab, R., Shoeb, M., Alam, P, … Lutfullah. (2017). Co-precipitation synthesis and characterization of Co doped SnO2 NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities. International Journal of Biological Macromolecules, 94, 554–565. doi:10.1016/j.ijbiomac.2016.10.05
  • Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627. doi:10.1126/science.1114397
  • Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8, 543–557. doi:10.1038/nmat2442
  • Oliva, F. Y., Avalle, L. B., Cámara, O. R., & De Pauli, C. P. (2003). Adsorption of human serum albumin (HSA) onto colloidal TiO2 particles. Journal of Colloid and Interface Science, 261, 299–311. doi:10.1016/S0021-9797(03)00029-8
  • Patel, S., Patel, P., Undre, S. B., Pandya, S. R., Singh, M., & Bakshi, S. (2016). DNA binding and dispersion activities of titanium dioxide nanoparticles with UV/vis spectrophotometry, fluorescence spectroscopy and physicochemical analysis at physiological temperature. Journal of Molecular Liquids, 213, 304–311. doi:10.1016/j.molliq.2015.11.002
  • Patterson, A. L. (1939). The scherrer formula for X-Ray particle size determination. Physical Review, 56, 978–982.10.1103/PhysRev.56.978
  • Peacocke, A. R. (1968). The interaction of aminoacridines with nucleic acids. Biological Chemistry Hoppe-Seyler, 349, 953.
  • Plumbridge, T. W., & Brown, J. R. (1977). Spectrophotometric and fluorescence polarization studies of the binding of ethidium, daunomycin and mepacrine to DNA and to poly(I-C). Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 479, 441–449.10.1016/0005-2787(77)90037-5
  • Podila, R., Vedantam, P., Ke, P. C., Brown, J. M., & Rao, A. M. (2012). Evidences for charge transfer-induced conformational changes in carbon nanostructure-protein corona. The Journal of Physical Chemistry C, 116, 22098–22103. doi:10.1021/jp3085028
  • Prado-Gotor, R., & Grueso, E. (2011). A kinetic study of the interaction of DNA with gold nanoparticles: Mechanistic aspects of the interaction. Physical Chemistry Chemical Physics, 13, 1479–1489. doi:10.1039/C0CP00901F
  • Quinlan, G. J., Martin, G. S., & Evans, T. W. (2005). Albumin: Biochemical properties and therapeutic potential. Hepatology, 41, 1211–1219. doi:10.1002/hep.20720
  • Röcker, C., Pötzl, M., Zhang, F., Parak, W. J., & Nienhaus, G. U. (2009). A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nature Nanotechnology, 4, 577–580. doi:10.1038/nnano.2009.195
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20, 3096–3102.10.1021/bi00514a017
  • Saptarshi, S. R., Duschl, A., & Lopata, A. L. (2013). Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology, 11, 26. doi:10.1186/1477-3155-11-26
  • Saquib, Q., Al-Khedhairy, A. A., Alarifi, S. A., Dutta, S., Dasgupta, S., & Musarrat, J. (2010). Methyl thiophanate as a DNA minor groove binder produces MT-Cu(II)-DNA ternary complex preferably with AT rich region for initiation of DNA damage. International Journal of Biological Macromolecules, 47, 68–75. doi:10.1016/j.ijbiomac.2010.03.017
  • Saquib, Q., Al-Khedhairy, A. A., Alarifi, S. A., Dwivedi, S., Mustafa, J., & Musarrat, J. (2010). Fungicide methyl thiophanate binding at sub-domain IIA of human serum albumin triggers conformational change and protein damage. International Journal of Biological Macromolecules, 47, 60–67. doi:10.1016/j.ijbiomac.2010.03.020
  • Sharifi, S., Behzadi, S., Laurent, S., Laird Forrest, M. L., Stroeve, P., & Mahmoudi, M. (2012). Toxicity of nanomaterials. Chemical Society Reviews, 41, 2323–2343. doi:10.1039/c1cs15188f
  • Simón-Vázquez, R., Lozano-Fernández, T., Peleteiro-Olmedo, M., & González-Fernández, Á. (2014). Conformational changes in human plasma proteins induced by metal oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 113, 198–206. doi:10.1016/j.colsurfb.2013.08.047
  • Sułkowska, A. (2002). Interaction of drugs with bovine and human serum albumin. Journal of Molecular Structure, 614, 227–232. doi:10.1016/S0022-2860(02)00256-9
  • Thumser, A. E., Buckland, A. G., & Wilton, D. C. (1998). Monoacylglycerol binding to human serum albumin: Evidence that monooleoylglycerol binds at the dansylsarcosine site. The Journal of Lipid Research, 39, 1033–1038.
  • Treuel, L., Brandholt, S., Maffre, P., Wiegele, S., Shang, L., & Nienhaus, G. U. (2014). Impact of protein modification on the protein corona on nanoparticles and nanoparticle–cell interactions. ACS Nano, 8, 503–513. doi:10.1021/nn405019v
  • Tsou, K. C., & Yip, K. F. (1976). Effect of deoxyribonuclease on adriamycin-polynucleotide complexes. Cancer Research, 36, 3367–3373.
  • Vamanu, C. I., Cimpan, M. R., Høl, P. J., Sørnes, S., Lie, S. A., & Gjerdet, N. R. (2008). Induction of cell death by TiO2 nanoparticles: Studies on a human monoblastoid cell line. Toxicology In Vitro, 22, 1689–1696. doi:10.1016/j.tiv.2008.07.002
  • Wang, Y.-Q., Zhang, H.-M., & Zhang, G.-C. (2006). Studies of the interaction between palmatine hydrochloride and human serum albumin by fluorescence quenching method. Journal of Pharmaceutical and Biomedical Analysis, 41, 1041–1046. doi:10.1016/j.jpba.2006.01.028
  • Watson, P., Jones, A. T., & Stephens, D. J. (2005). Intracellular trafficking pathways and drug delivery: Fluorescence imaging of living and fixed cells. Advanced Drug Delivery Reviews, 57, 43–61. doi:10.1016/j.addr.2004.05.003
  • Yuan, J.-L., Iv, Z., Liu, Z.-G., Hu, Z., & Zou, G.-L. (2007). Study on interaction between apigenin and human serum albumin by spectroscopy and molecular modeling. Journal of Photochemistry and Photobiology A: Chemistry, 191, 104–113. doi:10.1016/j.jphotochem.2007.04.010
  • Zhang, J., Badugu, R., & Lakowicz, J. R. (2008). Fluorescence quenching of CdTe nanocrystals by bound gold nanoparticles in aqueous solution. Plasmonics, 3, 3–11. doi:10.1007/s11468-007-9047-6
  • Zhang, W., Zhang, Q., Wang, F., Yuan, L., Xu, Z., Jiang, F., & Liu, Y. (2015). Comparison of interactions between human serum albumin and silver nanoparticles of different sizes using spectroscopic methods. Luminescence, 30, 397–404. doi:10.1002/bio.2748

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.