217
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Cationic surfactant mediated fibrillogenesis in bovine liver catalase: a biophysical approach

, , , , , & ORCID Icon show all
Pages 2543-2557 | Received 02 Mar 2017, Accepted 27 Jul 2017, Published online: 20 Aug 2017

References

  • Abdelhameed, A. S., Alam, P., & Khan, R. H. (2016). Binding of Janus kinase inhibitor tofacitinib with human serum albumin: Multi-technique approach. Journal of Biomolecular Structure and Dynamics, 34, 2037–2044. doi:10.1080/07391102.2015.1104522
  • Abe, K., Makino, N., & Anan, F. K. (1979). pH dependency of kinetic parameters and reaction mechanism of beef liver catalase. The Journal of Biochemistry, 85, 473–479.10.1093/oxfordjournals.jbchem.a132353
  • Ajmal, M. R., Chaturvedi, S. K., Zaidi, N., Alam, P., Zaman, M., Siddiqi, M. K., … Khan, R. H. (2016). Biophysical insights into the interaction of hen egg white lysozyme with therapeutic dye clofazimine: Modulation of activity and SDS induced aggregation of model protein. Journal of Biomolecular Structure and Dynamics, 35, 2197–2210. doi:10.1080/07391102.2016.1211552
  • Ajmal, M. R., Zaidi, N., Alam, P., Nusrat, S., Siddiqi, M. K., Badr, G., … Khan, R. H. (2016). Insight into the interaction of antitubercular and anticancer compound clofazimine with human serum albumin: Spectroscopy and molecular modelling. Journal of Biomolecular Structure and Dynamics, 35, 46–57. doi:10.1080/07391102.2015.1132258
  • Ansari, A. A., Kamil, M., & Kabir-ud-Din, K. (2013). Polymer-surfactant interactions and the effect of tail size variation on micellization process of cationic ATAB surfactants in aqueous medium. Journal of Dispersion Science and Technology, 34, 722–730. doi:10.1080/01932691.2012.685850
  • Bai, G., Wang, Y., Wang, J., Han, B., & Yan, H. (2001). Microcalorimetric studies of the interaction between DDAB and SDS and the phase behavior of the mixture. Langmuir, 17, 3522–3525. doi:10.1021/la000768x
  • Bhattacharyya, J., & Das, K. P. (1999). Effect of surfactants on the prevention of protein aggregation during unfolding and refolding processes – Comparison with molecular chaperone α -crystallin. Journal of Dispersion Science and Technology, 20, 1163–1178. doi:10.1080/01932699908943842
  • Bordbar, A. K., Taheri-Kafrani, A., Mousavi, S. H., & Haertle, T. (2008). Energetics of the interactions of human serum albumin with cationic surfactant. Archives of Biochemistry and Biophysics, 470, 103–110. doi:10.1016/j.abb.2007.11.015
  • Cao, M., Han, Y., Wang, J., & Wang, Y. (2007). Modulation of fibrillogenesis of amyloid beta (1–40) peptide with cationic gemini surfactant. The Journal of Physical Chemistry B, 111, 13436–13443. doi:10.1021/jp075271b
  • Castellano, L. M., & Shorter, J. (2012). The surprising role of amyloid fibrils in HIV Infection. Biology (Basel), 1, 58–80. doi:10.3390/biology1010058
  • Chandel, T. I., Rabbani, G, Khan, M., Zaman, M., Alam, P., Shahein, E. Y., & Khan, R. H.. (2016). Binding of anti-cardiovascular drug to serum albumin: An insight in the light of spectroscopic and computational approaches. Journal of Biomolecular Structure and Dynamics, 1–14. doi:10.1080/07391102.2016.1266968
  • Chaturvedi, S. K., Khan, J. M., Siddiqi, M. K., Alam, P., & Khan, R. H. (2016). Comparative insight into surfactants mediated amyloidogenesis of lysozyme. International Journal of Biological Macromolecules, 83, 315–325. doi:10.1016/j.ijbiomac.2015.11.053
  • Chen, Y. H., Yang, J. T., & Martinez, H. M. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry, 11, 4120–4131. doi:10.1021/bi00772a015
  • Cheng, C., & Ran, S. Y. (2014). Interaction between DNA and trimethyl-ammonium bromides with different alkyl chain lengths. The Scientific World Journal, 2014, 863049. doi:10.1155/2014/863049
  • Chiti, F., & Dobson, C. M. (2006). Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75, 333–366. doi:10.1146/annurev.biochem.75.101304.123901
  • Dasgupta, M., & Kishore, N. (2017). Selective inhibition of aggregation/fibrillation of bovine serum albumin by osmolytes: Mechanistic and energetics insights. PLoS ONE, 12, e0172208. doi:10.1371/journal.pone.0172208
  • De, S., Girigoswami, A., & Das, S. (2005). Fluorescence probing of albumin–surfactant interaction. Journal of Colloid and Interface Science, 285, 562–573. doi:10.1016/j.jcis.2004.12.022
  • Deisseroth, A., & Dounce, A. L. (1970). Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiological Reviews, 50, 319–375.
  • Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426, 884–890. doi:10.1038/nature02261
  • Hasegawa, K., Ohhashi, Y., Yamaguchi, I., Takahashi, N., Tsutsumi, S., Goto, Y., … Naiki, H. (2003). Amyloidogenic synthetic peptides of β2-microglobulin-a role of the disulfide bond. Biochemical and Biophysical Research Communications, 304, 101–106. doi:10.1016/S0006-291X(03)00543-6
  • Henry, G. D., & Sykes, B. D. (1994). Methods to study membrane protein structure in solution. Methods Enzymology, 239, 515–535. doi:10.1016/S0076-6879(94)39020-7
  • Hook, D. W. A., & Harding, J. J. (1997). Molecular chaperone protect catalase against thermal stress. European Journal of Biochemistry, 247, 380–385. doi:10.1111/j.1432-1033.1997.00380.x
  • Hossain, M. T., & Aso, Y. (2013). Silkworm sHSP19.9 and sHSP20.8 with ATP on the thermal induced aggregation of bovine liver catalase (BLC). Journal of Agroforestry and Environment, 7, 71–75.
  • Ishtikhar, M., Chandel, T. I., Ahmad, A., Ali, M. S., Al-lohadan, H. A., Atta, A. M., & Khan, R. H. (2015). Rosin surfactant QRMAE can be utilized as an amorphous aggregate inducer: A case study of mammalian serum albumin. PLoS ONE, 10, e0139027. doi:10.1371/journal.pone.0139027
  • Ishtikhar, M., Khan, M. V., Khan, S., Chaturvedi, S. K., Badr, G., Mahmoud, M. H., & Khan, R. H. (2016). Biophysical and molecular docking insight into interaction mechanism and thermal stability of human serum albumin isoforms with a semi-synthetic water-soluble camptothecin analog irinotecan hydrochloride. Journal of Biomolecular Structure and Dynamics, 34, 1545–1560. doi:10.1080/07391102.2015
  • Ishtikhar, M., Rahisuddin, Khan, M. V., & Khan, R. H. (2016). Anti-aggregation property of thymoquinone induced by copper-nanoparticles: A biophysical approach. International Journal of Biological Macromolecules, 93, 1174–1182. doi:10.1016/j.ijbiomac.2016.09.089
  • Jiao, M., Zhou, Y. L., Li, H. T., Zhang, D. L., Chen, J., & Liang, Y. (2010). Structural and functional alterations of two multidomain oxidoreductases induced by guanidine hydrochloride. Acta Biochimica et Biophysica Sinica, 42, 30–38. doi:10.1093/abbs/gmp107
  • Jones, M. N., Manley, P., Midgley, P. J., & Wilkinson, A. E. (1982). Dissociation of bovine and bacterial catalases by sodium n-dodecyl sulfate. Biopolymers, 21, 1435–1450. doi:10.1002/bip.360210712
  • Jones, M. N., Skinner, H. A., & Tipping, E. (1975). The interaction between bovine serum albumin and surfactants. Biochemical Journal, 147, 229–234. doi:10.1042/bj1470229
  • Jones, S., Manning, J., Kad, N. M., & Radford, S. E. (2003). Amyloid-forming peptides from beta2-microglobulin-Insights into the mechanism of fibril formation in vitro. Journal of Molecular Biology, 325, 249–257. doi:10.1016/S0022-2836(02)01227-5
  • Khan, J. M., Abdulrehman, S. A., Zaidi, F. K., Gourinath, S., & Khan, R. H. (2014). Hydrophobicity alone can not trigger aggregation in protonated mammalian serum albumins. Physical Chemistry Chemical Physics, 16, 5150–5161. doi:10.1039/c3cp54941k
  • Khan, J. M., Qadeer, A., Chaturvedi, S. K., Ahmad, E., Rehman, S. A., Gourinath, S., & Khan, R. H. (2014). SDS can be utilized as an amyloid inducer: A case study on diverse proteins. PLoS ONE, 7, e29694. doi:10.1371/journal.pone.0029694
  • Khan, M. V., Ishtikhar, M., Rabbani, G., Zaman, M., Abdelhameed, A. S., & Khan, R. H. (2017). Polyols (glycerol and ethylene glycol) mediated amorphous aggregate inhibition and secondary structure restoration of metalloproteinase-conalbumin (ovotransferrin). International Journal of Biological Macromolecules, 94, 290–300. doi:10.1016/j.ijbiomac.2016.10.023
  • Khan, M. V., Rabbani, G., Ahmad, E., & Khan, R. H. (2014). Fluoroalcohols-induced modulation and amyloid formation in conalbumin. International Journal of Biological Macromolecules, 70, 606–614. doi:10.1016/j.ijbiomac.2014.07.027
  • Kozhukh, G. V., Hagihara, Y., Kawakami, T., Hasegawa, K., Naiki, H., & Goto, Y. (2002). Investigation of a peptide responsible for amyloid fibril formation of beta 2-microglobulin by achromobacter protease I. Journal of Biological Chemistry, 277, 1310–1315. doi:10.1074/jbc.M108753200
  • Lad, M. D., Ledger, V. M., Briggs, B., Green, R. J., & Frazier, R. A. (2003). Analysis of the SDS-lysozyme binding isotherm. Langmuir, 19, 5058–5103. doi:10.1021/la0269560
  • Larsson, A., Soderberg, L., Westermark, G. T., Sletten, K., Tjernberg, L. O., Naslund, J., & Westermark, P. (2007). Unwinding fibril formation of medin, the peptide of the most common form of human amyloid. Biochemical and Biophysical Research Communications, 361, 822–828. doi:10.1016/j.bbrc.2007.06.187
  • Liu, Z., Fan, Y., Tian, M., Wang, R., Han, Y., & Wang, Y. (2014). Surfactant selection principle for reducing critical micelle concentration in mixtures of oppositely charged gemini surfactants. Langmuir, 30, 7968–7976. doi:10.1021/la501656s
  • London, J., Skrzynia, C., & Goldberg, M. E. (1974). Renaturation of escherichia coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers. European Journal of Biochemistry, 47, 409–415. doi:10.1111/j.1432-1033.1974.tb03707.x
  • Mahler, H. C., Friess, W., Grauschopf, U., & Kiese, S. (2009). Protein aggregation: Pathways, induction factors and analysis. Journal of Pharmaceutical Sciences, 98, 2909–2934. doi:10.1002/jps.21566
  • Murthy, M. R., Reid, T. J., 3rd, Sicignano, A., Tanaka, N., & Rossmann, M. G. (1981). Structure of beef liver catalase. Journal of Molecular Biology, 152, 465–499. doi:10.1016/0022-2836(81)90254-0
  • Nicholls, A. (1992). GRASP: Graphical representation and analysis of surface potential properties. New York, NY: Columbia University Press.
  • Nilsson, M. R. (2004). Techniques to study amyloid fibril formation in vitro. Methods, 34, 151–160. doi:10.1016/j.ymeth.2004.03.012
  • Pandey, N. K., Ghosh, S., & Dasgupta, S. (2013). Effect of surfactants on preformed fibrils of human serum albumin. International Journal of Biological Macromolecules, 59, 39–45. doi:10.1016/j.ijbiomac.2013.04.014
  • Panyukov, Y. V., Nemykh, M. A., Dobrov, E. N., & Drachev, V. A. (2008). Surfactant-induced amorphous aggregation of tobacco mosaic virus coat protein: A physical methods approach. Macromolecular Bioscience, 8, 199–209. doi:10.1002/mabi.200700145
  • Prakash, K., Prajapati, S., Ahmad, A., Jain, S. K., & Bhakuni, V. (2002). Unique oligomeric intermediates of bovine liver catalase. Protein Science, 11, 46–57. doi:10.1110/ps.20102
  • Qadeer, A., Zaman, M., & Khan, R. H. (2014). Inhibitory effect of post-micellar SDS concentration on thermal aggregation and activity of papain. Biochemistry (Moscow), 79, 785–796. doi:10.1134/S0006297914080069
  • Rafikova, E. R., Panyukov, Y. V., Arutyunyan, A. M., Yaguzhinsky, L. S., Drachev, V. A., & Dobrov, E. N. (2004). Low sodium dodecyl sulfate concentrations inhibit tobacco mosaic virus coat protein amorphous aggregation and change the protein stability. Biochemistry (Moscow), 69, 1372–1378. doi:10.1007/s10541-005-0083-6
  • Reid, T. J., 3rd, Murthy, M. R., Sicignano, A., Tanaka, N., Musick, W. D., & Rossmann, M. G. (1981). Structure and heme environment of beef liver catalase at 2.5 A resolution. Proceedings of the National Academy of Sciences, 78, 4767–4771.10.1073/pnas.78.8.4767
  • Sabate, R., & Estelrich, J. (2005). Stimulatory and inhibitory effects of alkyl bromide surfactants on beta-amyloid fibrillogenesis. Langmuir, 21, 6944–6949. doi:10.1021/la050472x
  • Samejima, T., & Yang, J. T. (1963). Reconstitution of acid-denatured catalase. The Journal of Biological Chemistry, 238, 3256–3261.
  • Schroeder, W. A., Saha, A., Fenninger, W. D., & Cua, J. T. (1962). Preliminary chemical investigation of the structures of beef-liver and horse-liver catalases. Biochimica et Biophysica Acta, 58, 611–613. doi:10.1016/0006-3002(62)90080-X
  • Selkoe, D. J. (2004). Cell biology of protein misfolding: The examples of Alzheimer’s and Parkinson’s diseases. Nature Cell Biology, 6, 1054–1061. doi:10.1038/ncb1104-1054
  • Shamsi, A., Ahmed, A., & Bano, B. (2016). Glyoxal induced structural transition of buffalo kidney cystatin to molten globule and aggregates: Anti-fibrillation potency of quinic acid. IUBMB Life, 68, 156–166. doi:10.1002/iub.1471
  • Steinhardt, J., & Reynolds, J. A. (1969). Multiple equilibria in proteins. Cambridge, MA: Academic Press.
  • Sun, C., Yang, J., Wu, X., Huang, X., Wang, F., & Liu, S. (2005). Unfolding and refolding of bovine serum albumin induced by cetylpyridinium bromide. Biophysical Journal, 88, 3518–3524. doi:10.1529/biophysj.104.051516
  • Swords, N. A., & Wallace, B. A. (1993). Circular-dichroism analyses of membrane proteins: Examination of environmental effects on bacteriorhodopsin spectra. Biochemical Journal, 289, 215–219. doi:10.1042/bj2890215
  • Upadhya, R., Nagajyothi, & Bhat, S. G. (2000). Stabilization of D-amino acid oxidase and catalase in permeabilized Rhodotorula gracilis cells and its application for the preparation of alpha-ketoacids. Biotechnology and Bioengineering, 68, 430–436. doi:10.1002/(SICI)1097-0290(20000520)68:4<430::AID-BIT8>3.0.CO;2-3
  • Uversky, V. N., & Fink, A. L. (2004). Conformational constraints for amyloid fibrillation: The importance of being unfolded. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1698, 131–153. doi:10.1016/j.bbapap.2003.12.008
  • Valstar, A., Vasilescu, M., Vigouroux, C. C., Stilbs, P., & Almgren, M. (2001). Heat-set bovine serum albumin−sodium dodecyl sulfate gels studied by Fluorescence probe methods, NMR, and light scattering. Langmuir, 17, 3208–3215. doi:10.1021/la0016221
  • Vieira, O. V., Hartmann, D. O., Cardoso, C. M., Oberdoerfer, D., Baptista, M., Santos, M. A., … Vaz, W. L. (2008). Surfactants as microbicides and contraceptive agents: A systematic in vitro study. PLoS ONE, 3, e2913. doi:10.1371/journal.pone.0002913
  • Wang, J., Lu, D., Lin, Y., & Liu, Z. (2005). How CTAB assists the refolding of native and recombinant lysozyme. Biochemical Engineering Journal, 24, 269–277. doi:10.1016/j.bej.2005.03.004
  • Wang, W., Nema, S., & Teagarden, D. (2010). Protein aggregation – Pathways and influencing factors. International Journal of Pharmaceutics, 390, 89–99. doi:10.1016/j.ijpharm.2010.02.025
  • Wetzel, R. (1994). Mutations and off-pathway aggregation of proteins. Trends in Biotechnology, 12, 193–198. doi:10.1016/0167-7799(94)90082-5
  • Yoshimoto, M., Wang, S., Fukunaga, K., Fournier, D., Walde, P., Kuboi, R., & Nakao, K. (2005). Novel immobilized liposomal glucose oxidase system using the channel protein OmpF and catalase. Biotechnology and Bioengineering, 90, 231–238. doi:10.1002/bit.20422
  • Zaman, M., Chaturvedi, S. K., Zaidi, N., Qadeer, A., Chandel, T. I., Nusrat, S., … Khan, R. H. (2016). DNA induced aggregation of stem bromelain; A mechanistic insight. RSC Advances, 6, 37591–37599. doi:10.1039/C6RA01079B
  • Zaman, M., Zakariya, S. M., Nusrat, S., Khan, M. V., Qadeer, A., Ajmal, M. R., & Khan, R. H. (2016). Surfactant-mediated amyloidogenesis behavior of stem bromelain; a biophysical insight. Journal of Biomolecular Structure and Dynamics, 35, 1–13. doi:10.1080/07391102.2016.1185040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.