708
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Generation of AMBER force field parameters for zinc centres of M1 and M17 family aminopeptidases

, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 2595-2604 | Received 05 Jun 2017, Accepted 31 Jul 2017, Published online: 28 Aug 2017

References

  • Åqvist, J. (1992). Modelling of ion-ligand interactions in solutions and biomolecules. Journal of Molecular Structure: THEOCHEM, 256, 135–152.10.1016/0166-1280(92)87163-T
  • Bauvois, B., & Dauzonne, D. (2006). Aminopeptidase-N/CD13 (EC 3.4. 11.2) inhibitors: Chemistry, biological evaluations, and therapeutic prospects. Medicinal Research Reviews, 26, 88–130.10.1002/(ISSN)1098-1128
  • Bayly, C. I., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The Resp model. The Journal of Physical Chemistry, 97, 10269–10280.10.1021/j100142a004
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684–3690.10.1063/1.448118
  • Burley, S. K., David, P. R., Taylor, A., & Lipscomb, W. N. (1990). Molecular structure of leucine aminopeptidase at 2.7-A resolution. Proceedings of the National Academy of Sciences, 87, 6878–6882.10.1073/pnas.87.17.6878
  • Case, D., Darden, T., Cheatham, T., Simmerling, C., Wang, J., Duke, R., … Merz, K. (2012). AMBER12 and AMBERTOOLS13. San Francisco: Universty of California.
  • Chen, L., Lin, Y. L., Peng, G., & Li, F. (2012). Structural basis for multifunctional roles of mammalian aminopeptidase N. Proceedings of the National Academy of Sciences, 109, 17966–17971.10.1073/pnas.1210123109
  • Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 35, W522–W525.10.1093/nar/gkm276
  • Drinkwater, N., Lee, J., Yang, W., Malcolm, T. R., & McGowan, S. (2017). M1 aminopeptidases as drug targets: Broad applications or therapeutic niche? The FEBS Journal, 28, 1473–1488.10.1111/febs.14009
  • Drinkwater, N., Vinh, N. B., Mistry, S. N., Bamert, R. S., Ruggeri, C., Holleran, J. P., … Scammells, P. J. (2016). Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions. European Journal of Medicinal Chemistry, 110, 43–64.10.1016/j.ejmech.2016.01.015
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577–8593.10.1063/1.470117
  • Fiser, A., & Sali, A. (2003). Modeller: Generation and refinement of homology-based protein structure models. Methods in Enzymology, 374, 461–491.10.1016/S0076-6879(03)74020-8
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. (2009). Gaussian 09, revision B.01. Wallingford, CT: Gaussian.
  • Hancock, R. D. (1989). Molecular mechanics calculations as a tool in coordination chemistry. Inorganic Chemistry, 37, 187–291.10.1021/ic00301a007
  • Hancock, R. D. (1990). Molecular mechanics calculations and metal-ion recognition. Accounts of Chemical Research, 23, 253–257.
  • Harbut, M. B., Velmourougane, G., Dalal, S., Reiss, G., Whisstock, J. C., Onder, O., … Greenbaum, D. C. (2011). Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proceedings of the National Academy of Sciences, 108, E526–534.10.1073/pnas.1105601108
  • Hermans, S. J., Ascher, D. B., Hancock, N. C., Holien, J. K., Michell, B. J., Chai, S. Y., … Parker, M. W. (2015). Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides. Protein Science, 24, 190–199.10.1002/pro.2604
  • Hitzerd, S. M., Verbrugge, S. E., Ossenkoppele, G., Jansen, G., & Peters, G. J. (2014). Positioning of aminopeptidase inhibitors in next generation cancer therapy. Amino Acids, 46, 793–808.10.1007/s00726-013-1648-0
  • Holz, R. C., Bzymek, K. P., & Swierczek, S. I. (2003). Co-catalytic metallopeptidases as pharmaceutical targets. Current Opinion in Chemical Biology, 7, 197–206.10.1016/S1367-5931(03)00033-4
  • Hu, L., & Ryde, U. (2011). Comparison of methods to obtain force-field parameters for metal sites. Journal of Chemical Theory and Computation, 7, 2452–2463.10.1021/ct100725a
  • Jones, P. M., Robinson, M. W., Dalton, J. P., & George, A. M. (2011). The Plasmodium falciparum malaria M1 alanyl aminopeptidase (Pf A-M1): Insights of catalytic mechanism and function from MD simulations. PLoS ONE, 6, e28589.10.1371/journal.pone.0028589
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926–935.10.1063/1.445869
  • Kawasaki, K. (1973). Simple derivations of generalized linear and nonlinear Langevin equations. Journal of Physics A: Mathematical, Nuclear and General, 6, 1289.10.1088/0305-4470/6/9/004
  • Kim, H., & Lipscomb, W. N. (1993). X-ray crystallographic determination of the structure of bovine lens leucine aminopeptidase complexed with amastatin: Formulation of a catalytic mechanism featuring a gem-diolate transition state. Biochemistry, 32, 8465–8478.10.1021/bi00084a011
  • Kochan, G., Krojer, T., Harvey, D., Fischer, R., Chen, L., Vollmar, M., … Oppermann, U. (2011). Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proceedings of the National Academy of Sciences, 108, 7745–7750.10.1073/pnas.1101262108
  • Li, P., & Merz Jr, K. M. (2017). Metal ion modeling using classical mechanics. Chemical Reviews, 117, 1564–1686.
  • Lin, F., & Wang, R. (2010). Systematic derivation of AMBER force field parameters applicable to zinc-containing systems. Journal of chemical theory and computation, 6, 1852–1870.
  • McGowan, S., Oellig, C. A., Birru, W. A., Caradoc-Davies, T. T., Stack, C. M., Lowther, J., … Whisstock, J. C. (2010). Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proceedings of the National Academy of Sciences, 107, 2449–2454.10.1073/pnas.0911813107
  • McGowan, S., Porter, C. J., Lowther, J., Stack, C. M., Golding, S. J., Skinner-Adams, T. S., … Dalton, J. P. (2009). Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proceedings of the National Academy of Sciences, 106, 2537–2542.10.1073/pnas.0807398106
  • Mistry, S. N., Drinkwater, N., Ruggeri, C., Sivaraman, K. K., Loganathan, S., Fletcher, S., … McGowan, S. (2014). Two-pronged attack: Dual inhibition of Plasmodium falciparum M1 and M17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors. Journal of Medicinal Chemistry, 57, 9168–9183.10.1021/jm501323a
  • Olsson, M. H., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical p K a predictions. Journal of Chemical Theory and Computation, 7, 525–537.10.1021/ct100578z
  • Pang, Y.-P. (1999). Novel zinc protein molecular dynamics simulations: Steps toward antiangiogenesis for cancer treatment. Journal of Molecular Modeling, 5, 196–202.10.1007/s008940050119
  • Peters, M. B., Yang, Y., Wang, B., Fusti-Molnar, L., Weaver, M. N., & Merz, K. M., Jr (2010). Structural survey of zinc containing proteins and the development of the zinc AMBER force field (ZAFF). Journal of Chemical Theory and Computation, 6, 2935–2947.10.1021/ct1002626
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781–1802.10.1002/(ISSN)1096-987X
  • Rawlings, N. D., Barrett, A. J., & Finn, R.. (2015). Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 44, D343–D350
  • Rawlings, N. D., Waller, M., Barrett, A. J., & Bateman, A. (2014). MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 42, D503–D509.10.1093/nar/gkt953
  • Ruggeri, C., Drinkwater, N., Sivaraman, K. K., Bamert, R. S., McGowan, S., & Paiardini, A. (2015). Identification and validation of a potent dual inhibitor of the P. falciparum M1 and M17 aminopeptidases using virtual screening. PLoS ONE, 10, e0138957.10.1371/journal.pone.0138957
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327–341.10.1016/0021-9991(77)90098-5
  • Sanz, Y. (2007). Aminopeptidases. In Polaina, J., & MacCabe, A. P. (Eds.), Industrial enzymes (pp. 243–260). Dordrecht: Springer.
  • Schrodinger, L. L. C. (2015). The PyMOL molecular graphics system (Version 1 8).
  • Scornik, O. A., & Botbol, V. (2001). Bestatin as an experimental tool in mammals. Current Drug Metabolism, 2, 67–85.10.2174/1389200013338748
  • Siegbahn, P. E. (2006). The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes. JBIC Journal of Biological Inorganic Chemistry, 11, 695–701.10.1007/s00775-006-0137-2
  • Sivaraman, K. K., Paiardini, A., Sienczyk, M., Rugger, C., Oellig, C. A., Dalton, J. P., … McGowan, S. (2013). Synthesis and structure-activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from Plasmodium falciparum. Journal of Medicinal Chemistry, 56, 5213–5217.10.1021/jm4005972
  • Skinner-Adams, T. S., Lowther, J., Teuscher, F., Stack, C. M., Grembecka, J., Mucha, A., … Gardiner, D. L. (2007). Identification of phosphinate dipeptide analog inhibitors directed against the Plasmodium falciparum M17 leucine aminopeptidase as lead antimalarial compounds. Journal of Medicinal Chemistry, 50, 6024–6031.10.1021/jm070733v
  • Skinner-Adams, T. S., Peatey, C. L., Anderson, K., Trenholme, K. R., Krige, D., Brown, C. L., … Gardinerd, D. L. (2012). The aminopeptidase inhibitor CHR-2863 is an orally bioavailable inhibitor of murine malaria. Antimicrobial Agents and Chemotherapy, 56, 3244–3249.10.1128/AAC.06245-11
  • Stote, R. H., & Karplus, M. (1995). Zinc binding in proteins and solution: A simple but accurate nonbonded representation. Proteins: Structure, Function, and Genetics, 23, 12–31.10.1002/(ISSN)1097-0134
  • Straeter, N., & Lipscomb, W. N. (1995). Two-metal ion mechanism of bovine lens leucine aminopeptidase: Active site solvent structure and binding mode of L-Leucinal, a gem-diolate transition state analog, by X-ray crystallography. Biochemistry, 34, 14792–14800.10.1021/bi00045a021
  • Strater, N., Sherratt, D. J., & Colloms, S. D. (1999). X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination. The EMBO Journal, 18, 4513–4522.10.1093/emboj/18.16.4513
  • Turner, P. (2005). XMGRACE (Version 5.1. 19). Center for Coastal and Land-Margin Research. Beaverton: Oregon Graduate Institute of Science and Technology.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718.10.1002/(ISSN)1096-987X
  • Velmourougane, G., Harbut, M. B., Dalal, S., McGowan, S., Oellig, C. A., Meinhardt, N., … Greenbaum, D. C. (2011). Synthesis of new (−)-bestatin-based inhibitor libraries reveals a novel binding mode in the S1 pocket of the essential malaria M1 metalloaminopeptidase. Journal of Medicinal Chemistry, 54, 1655–1666.10.1021/jm101227t
  • Wong, A. H., Zhou, D., & Rini, J. M. (2012). The X-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing. Journal of Biological Chemistry, 287, 36804–36813.10.1074/jbc.M112.398842
  • Yang, Y., Liu, C., Lin, Y. L., & Li, F. (2013). Structural insights into central hypertension regulation by human aminopeptidase A. Journal of Biological Chemistry, 288, 25638–25645.10.1074/jbc.M113.494955

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.