119
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Specification of binding modes between a transmembrane peptide mimic of ATP6V0C and polytopic E5 of human papillomavirus-16

&
Pages 2618-2627 | Received 29 Jun 2017, Accepted 31 Jul 2017, Published online: 31 Aug 2017

References

  • Andersson, T., Sparkowski, J., Goldstein, D. J., & Schlegel, R. (1995). Vacuolar H + -ATPase mutants transform cells and define a binding site for the papillomavirus E5 oncoprotein. Journal of Biological Chemistry, 270, 6830–6837.10.1074/jbc.270.12.6830
  • Barrera, F. N., Fendos, J., & Engelman, D. M. (2012). Membrane physical properties influence transmembrane helix formation. Proceedings of the National Academy of Sciences USA, 109, 14422–14427. doi:10.1073/pnas.1212665109
  • Bauer-Hofmann, R., Borghouts, C., Auvinen, E., Bourda, E., Rösl, F., & Alonso, A. (1996). Genomic cloning and characterization of the nonoccupied allele corresponding to the integration site of human papillomavirus type 16 DNA in the cervical cancer cell line SiHa. Virology, 217, 33–41. doi:10.1006/viro.1996.0090
  • Bubb, V., McCance, D. J., & Schlegel, R. (1988). DNA sequence of the HPV-16 E5 ORF and the structural conservation of its encoded protein. Virology, 163, 243–246.10.1016/0042-6822(88)90259-0
  • Cao, B., Porollo, A., Adamczak, R., Jarrell, M., & Meller, J. (2006). Enhanced recognition of protein transmembrane domains with prediction-based structural profiles. Bioinformatics, 22, 303–309. doi:10.1093/bioinformatics/bti784
  • Chandrasekhar, I., Kastenholz, M., Lins, R. D., Oostenbrink, C., Schuler, L. D., Tieleman, D. P., & van Gunsteren, W. F. (2003). A consistent potential energy parameter set for lipids: Dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. European Biophysics Journal, 32, 67–77.
  • Cserzö, M., Wallin, E., Simon, I., von Heijne, G., & Elofsson, A. (1997). Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: The dense alignment surface method. Protein Engineering Design and Selection, 10, 673–676.10.1093/protein/10.6.673
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A Method for determining the essential dynamics of proteins. Methods in Molecular Biology, 1084, 193–226. doi:10.1007/978-1-62703-658-0_11
  • DeGrado, W. F., Gratkowski, H., & Lear, J. D. (2003). How do helix–helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo-oligomeric helical bundles. Protein Science, 12, 647–665. doi:10.1110/ps.0236503
  • DiMaio, D., & Matton, D. (2001). Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene, 20, 7866–7873. doi:10.1038/sj.onc.1204915
  • Dunton, T. A., Goose, J. E., Gavaghan, D. J., Sansom, M. S. P., & Osborne, J. M. (2014). Free energy landscape of dimerization of a membrane protein. PLoS Computational Biology, 10(1), e1003417. doi:10.1371/journal.pcbi.1003417
  • Fischer, W. B., Li, L.-H., Mahato, D. R., Wang, Y.-T., & Chen, C. (2014). Viral channel proteins in intracellular protein-protein communication: Vpu of HIV-1, E5 of HPV16 and p7 of HCV. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1838, 1113–1121. doi:10.1016/j.bbamem.2013.08.017
  • Fischer, W. B., & Sansom, M. S. P. (2002). Viral ion channels: Structure and function. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1561, 27–45.10.1016/S0304-4157(01)00009-0
  • Gillespie, G. A. J., Somlo, S., Germino, G. G., Weinstat-Saslow, D., & Reeders, S. T. (1991). CpG island in the region of an autosomal dominant polycystic kidney disease locus defines the 5′ end of a gene encoding a putative proton channel. Proceedings of the National Academy of Sciences, 88, 4289–4293. doi:10.1073/pnas.88.10.4289
  • Gonzales, M. E., & Carrasco, L. (2003). Viroporins. FEBS Letters, 552, 28–34.10.1016/S0014-5793(03)00780-4
  • Hsu, H.-J., & Fischer, W. B. (2011). In silico investigations of possible routes of assembly of ORF 3a from SARS-CoV. Journal of Molecular Modeling, 18, 501–514.
  • Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292, 195–202. doi:10.1006/jmbi.1999.3091
  • Kahsay, R. Y., Gao, G., & Liao, L. (2005). An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics, 21, 1853–1858. doi:10.1093/bioinformatics/bti303
  • Käll, L., Krogh, A., & Sonnhammer, E. L. (2004). A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology, 338, 1027–1036. doi:10.1016/j.jmb.2004.03.016
  • Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305, 567–580.10.1006/jmbi.2000.4315
  • Krüger, J., & Fischer, W. B. (2009). Assembly of viral membrane proteins. Journal of Chemical Theory and Computation, 5, 2503–2513.10.1021/ct900185n
  • Liu, W., Crocker, E., Constantinescu, S. N., & Smith, S. O. (2005). Helix Packing and orientation in the transmembrane dimer of gp55-P of the spleen focus forming virus. Biophysical Journal, 89, 1194–1202.10.1529/biophysj.104.057844
  • Mahato, D. R., & Fischer, W. B. (2016). Weak selectivity predicted for modeled bundles of the viral channel forming protein E5 of human papillomavirus-16. The Journal of Physical Chemistry B, 120, 13076–13085. doi:10.1021/acs.jpcb.6b10050
  • Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2009). Principal component analysis for protein folding dynamics. Journal of Molecular Biology, 385, 312–329. doi:10.1016/j.jmb.2008.10.018
  • Marrink, S. J., De Vries, A. H., & Mark, A. E. (2004). Coarse grained model for semiquantitative lipid simulations. The Journal of Physical Chemistry B, 108, 750–760.10.1021/jp036508 g
  • Marrink, S. J., & Mark, A. E. (2003). Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. Journal of the American Chemical Society, 125, 15233–15242. doi:10.1021/ja0352092
  • Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., & de Vries, A. H. (2007). The MARTINI force field: Coarse grained model for biomolecular simulations. The Journal of Physical Chemistry B, 111, 7812–7824.10.1021/jp071097f
  • Morozova, D., Guigas, G., & Weiss, M. (2011). Dynamic structure formation of peripheral membrane proteins. PLoS Computational Biology, 7(6), e1002067. doi:10.1371/journal.pcbi.1002067
  • Nieva, J. L., Madan, V., & Carrasco, L. (2012). Viroporins: Structure and biological functions. Nature Reviews Microbiology, 10, 563–574.10.1038/nrmicro2820
  • Nilsson, J., Persson, B., & von Heijne, G. (2005). Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes. Proteins: Structure, Function, and Bioinformatics, 60, 606–616. doi:10.1002/prot.20583
  • Ritchie, D. W., & Kemp, G. J. L. (1999). Fast computation, rotation and comparison of low resolution spherical harmonic molecular surfaces. Journal of Computational Chemistry, 20, 383–395. doi:10.1002/(SICI)1096-987X(199903)20:4<383::AID-JCC1>3.0.CO;2-M
  • Ritchie, D. W., & Kemp, G. J. L. (2000). Protein docking using spherical polar fourier correlations. Proteins: Structure, Function, and Genetics, 52, 98–106.
  • Roux, B. (1995). The calculation of the potential of mean force using computer simulations. Computer Physics Communications, 91, 275–282. doi:10.1016/0010-4655(95)00053-I
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31, 3381–3385. doi:10.1093/nar/gkg520
  • Scott, R. W., DeGrado, W. F., & Tew, G. N. (2008). De novo designed synthetic mimics of antimicrobial peptides. Current Opinion in Biotechnology, 19, 620–627.10.1016/j.copbio.2008.10.013
  • Seedorf, K., Krämmer, G., Dürst, M., Suhai, S., & Röwekamp, W. G. (1985). Human papillomavirus type 16 DNA sequence. Virology, 145, 181–185. doi:10.1016/0042-6822(85)90214-4
  • Senes, A., Gerstein, M., & Engelman, D. M. (2000). Statistical analysis of amino acid patterns in transmembrane helices: The GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions. Journal of Molecular Biology, 296, 921–936. doi:10.1006/jmbi.1999.3488
  • Sittel, F., Jain, A., & Stock, G. (2014). Principal component analysis of molecular dynamics: On the use of Cartesian vs. internal coordinates. The Journal of Chemical Physics, 141, 014111. doi:10.1063/1.4885338
  • Tusnády, G. E., & Simon, I. (2001). The HMMTOP transmembrane topology prediction server. Bioinformatics, 17, 849–850.10.1093/bioinformatics/17.9.849
  • Ulmschneider, M., & Sansom, M. S. P. (2001). Amino acid distribution in integral membrane protein structures. Biochimica et Biophysica Acta, 1512, 1–14.
  • Viklund, H., & Elofsson, A. (2008). OCTOPUS: Improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics, 24, 1662–1668. doi:10.1093/bioinformatics/btn221
  • Wang, K., Xie, S., & Sun, B. (2010). Viral proteins function as ion channels. Biochimica et Biophysica Acta, 1808, 510–515.
  • Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Tieleman, D. P., & Marrink, S. J. (2015). Computational lipidomics with insane: A versatile tool for generating custom membranes for molecular simulations. Journal of Chemical Theory and Computation, 11, 2144–2155. doi:10.1021/acs.jctc.5b00209
  • Wassenaar, T. A., Pluhackova, K., Böckmann, R. A., Marrink, S. J., & Tieleman, D. P. (2014). Going backward: A flexible geometric approach to reverse transformation from coarse grained to atomistic models. Journal of Chemical Theory and Computation, 10, 676–690. doi:10.1021/ct400617g
  • Wetherill, L. F., Holmes, K. K., Verow, M., Müller, M., Howell, G., Harris, M., & Macdonald, A. (2012). High-risk human papillomavirus E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors. Journal of Virology, 86, 5341–5351.10.1128/JVI.06243-11
  • Wong, V., & Case, D. A. (2008). Evaluating rotational diffusion from protein MD simulations. The Journal of Physical Chemistry B, 112, 6013–6024. doi:10.1021/jp0761564
  • Xiang, Z., Soto, C. S., & Honig, B. (2002). Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction. Proceedings of the National Academy of Sciences, 99, 7432–7437.10.1073/pnas.102179699
  • Yamamoto, E., Kalli, A. C., Akimoto, T., Yasuoka, K., & Sansom, M. S. (2015). Anomalous dynamics of a lipid recognition protein on a membrane surface. Scientific Reports, 5, 18245. doi:10.1038/srep18245
  • Yin, H., Slusky, J. S., Berger, B. W., Walters, R. S., Vilaire, G., Litvinov, R. I., & DeGrado, W. F. (2007). Computational design of peptides that target transmembrane helices. Science, 315, 1817–1823.10.1126/science.1136782
  • Zhao, J., Benlekbir, S., & Rubinstein, J. L. (2015). Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature, 521, 241–245. doi:10.1038/nature14365
  • Zhou, F. X., Cocco, M. J., Russ, W. P., Brunger, A. T., & Engelman, D. M. (2000). Interhelical hydrogen bonding drives strong interactions in membrane proteins. Natural Structural Biology, 7, 154–160. doi:10.1038/72430
  • Zhou, J., Zhang, Z., Mi, Z., Wang, X., Zhang, Q., Li, X., & Cen, S. (2012). Characterization of the interface of the bone marrow stromal cell antigen 2-Vpu protein complex via computational chemistry. Biochemistry, 51, 1288–1296.10.1021/bi2015986

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.