191
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Glycation, oxidation and glycoxidation of IgG: a biophysical, biochemical, immunological and hematological study

, , , , , & show all
Pages 2637-2653 | Received 04 Feb 2017, Accepted 28 Jul 2017, Published online: 12 Sep 2017

References

  • Ahmad, S., Moinuddin, & Ali, A. (2012). Immunological studies on glycated human IgG. Life Sciences, 90, 980–987. doi:10.1016/j.lfs.2012.05.002
  • Ahmad, S., Moinuddin, Khan, R. H., & Ali, A. (2012). Physicochemical studies on glycation-induced structural changes in human IgG. IUBMB Life, 64, 151–156. doi:10.1002/iub.582
  • Ahmad, S., Khan, M. S., Akhter, F., Khan, M. S., Khan, A., Ashraf, J. M., & Shahab, U. (2014). Glycoxidation of biological macromolecules: A critical approach to halt the menace of glycation. Glycobiology, 24, 979–990. doi:10.1093/glycob/cwu057
  • Ahmed, M. U., Brinkmann, F. E., Degenhardt, T. P., Thorpe, S. R., & Baynes, J. W. (1997). N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochemical Journal, 324, 565–570. doi:10.1042/bj3240565
  • Ahmed, N., Battah, S., Karachalias, N., Babaei-Jadidi, R., Horanyi, M., Baroti, K., … Thornalley, P. J. (2003). Increased formation of methylglyoxal and protein glycation, oxidation and nitrosation in triosephosphate isomerase deficiency. Biochimica et Biophysica Acta (BBA), 1639, 121–132. doi:10.1016/j.bbadis.2003.08.002
  • Ajmal, M. R., Nusrat, S., Alam, P., Zaidi, N., Badr, G., Mahmoud, M. H., … Khan, R. H. (2016). Differential mode of interaction of Thioflavin T with native β structural motif in human α 1-acid glycoprotein and cross beta sheet of its amyloid: Biophysical and molecular docking approach. Journal of Molecular Structure, 1117, 208–217. doi:10.1016/j.molstruc.2016.03.081
  • Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., Geddes, J. W., & Markesbery, W. R. (2001). Protein oxidation in the brain in Alzheimer’s disease. Neuroscience, 103, 373–383. doi:10.1016/S0306-4522(00)00580-7
  • Alam, K., Moinuddin, & Jabeen, S. (2007). Immunogenicity of mitochondrial DNA modified by hydroxyl radical. Cellular Immunology, 247, 12–17. doi:10.1016/j.cellimm.2007.06.007
  • Alberts, B., Johnson, A., Lewis, J., Walter, P., Raff, M., & Roberts, K. (2002). Molecular biology of the cell (4th ed., International Student Edition). Abingdon: Routledge.
  • Al-Shobaili, H. A., Al Robaee, A. A., Alzolibani, A., Khan, M. I., & Rasheed, Z. (2011). Hydroxyl radical modification of immunoglobulin g generated cross-reactive antibodies: Its potential role in systemic lupus erythematosus. Clinical Medicine Insights Arthritis and Musculoskeletal Disorders, 4, 11–19. doi:10.4137/CMAMD.S6793
  • Ansari, N. A., Alam, K., & Ali, A. (2009). Preferential recognition of Amadori-rich lysine residues by serum antibodies in diabetes mellitus: Role of protein glycation in the disease process. Human Immunology, 70, 417–424. doi:10.1016/j.humimm.2009.03.015
  • Arfat, M. Y., Ashraf, J. M., Arif, Z., Moinuddin, & Alam, K. (2014). Fine characterization of glucosylated human IgG by biochemical and biophysical methods. International Journal of Biological Macromolecules, 69, 408–415. doi:10.1016/j.ijbiomac.2014.05.069
  • Arfat, M. Y., Arif, Z., Chaturvedi, S. K., Moinuddin, & Alam, K. (2016). Peroxynitrite-induced structural perturbations in human IgG: A physicochemical study. Archives of Biochemistry and Biophysics, 603, 72–80. doi:10.1016/j.abb.2016.05.011
  • Ashraf, J. M., Ahmad, S., Rabbani, G., Hasan, Q., Jan, A. T., Lee, E. J., & Choi, I. (2015). 3-Deoxyglucosone: A potential glycating agent accountable for structural alteration in H3 histone protein through generation of different AGEs. PLoS ONE, 10, e0116804. eCollection 2015. doi:10.1371/journal.pone.0116804
  • Awartani, F. (2010). Serum immunoglobulin levels in type 2 diabetes patients with chronic periodontitis. The Journal of Contemporary Dental Practice, 11, 1–8.
  • Bakshi, K., Liyanage, M. R., Volkin, D. B., & Middaugh, C. R. (2014). Fourier transform infrared spectroscopy of peptides. Methods in Molecular Biology, 1088, 255–269. doi:10.1007/978-1-62703-673-3_18
  • Brien, R., & Timmins, K. (1994). The role of oxidation and glycation in the pathogenesis of diabetic atherosclerosis. Trends in Endocrinology & Metabolism, 5, 329–334. doi:10.1016/1043-2760(94)90162-7
  • Cai, Z., & Yan, L. J. (2013). Protein oxidative modifications: Beneficial roles in disease and health. Journal of Biochemical and Pharmacological Research, 1, 15–26.
  • Chaplen, F. W., Fahl, W. E., & Cameron, D. C. (1998). Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells. Proceedings of the National Academy of Sciences, 95, 5533–5538. doi:10.1073/pnas.95.10.5533
  • Cooper, R. A., & Anderson, A. (1970). The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli. FEBS Letters, 11, 273–276. doi:10.1016/0014-5793(70)80546-4
  • Desai, K. M., Chang, T., Wang, H., Banigesh, A., Dhar, A., Liu, J. … Wu, L. (2010). Oxidative stress and aging: Is methylglyoxal the hidden enemy? Canadian Journal of Physiology and Pharmacology, 88, 273–284. doi:10.1139/Y10-001
  • Dong, A., Huang, P., & Caughey, W. S. (1990). Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry, 29, 3303–3308. doi:10.1021/bi00465a022
  • Guedes, S., Vitorino, R., Domingues, M. R., Amado, F., & Domingues, P. (2011). Glycation and oxidation of histones H2B and H1: In vitro study and characterization by mass spectrometry. Analytical and Bioanalytical Chemistry, 399, 3529–3539. doi:10.1007/s00216-011-4679-y
  • Guedes-Martins, L., Matos, L., Soares, A., Silva, E., & Almeida, H. (2013). AGEs, contributors to placental bed vascular changes leading to preeclampsia. Free Radical Research, 47, 70–80. doi:10.3109/10715762.2013.815347
  • Gupta, A., Wani, A., Joshi, A., Ahsan, H., & Ahmad, R. (2014). Characterization of human serum immunoglobulin G modified with singlet oxygen. Indian Journal of Clinical Biochemistry, 29, 63–68. doi:10.1007/s12291-013-0333-0
  • Ho, C., Lee, P. H., Huang, W. J., Hsu, Y. C., Lin, C. L., & Wang, J. Y. (2007). Methylglyoxal-induced fibronectin gene expressionthrough Ras-mediated NADPH oxidase activation in renal mesangial cells. Nephrology, 12, 348–356. doi:10.1111/j.14401797.2007.00809.x
  • Houde, D., Peng, Y., Steven, A., Berkowitz, & Engen, J. R. (2010). Post-translational modifications differentially affect IgG1 conformation and receptor binding. Molecular and Cellular Proteomics, 9, 1716–1718. doi:10.1074/mcp.M900540-MCP200
  • Islam, S., Mir, A. R., Raghav, A., Khan, F., Alam, K., Ali, A., & Uddin, M. (2017). Neo-epitopes generated on hydroxyl Radical modified glycated IgG have role in immunopathology of diabetes type 2. PLoS ONE, 12, e0169099. doi:10.1371/journal.pone.0169099
  • Janeway, C. A., Jr, Travers, P., Walport, M., & Shlomchik, M. J. (2001). The immune system in health and disease. New York, NY: Garland Science.
  • Kalapos, M. P. (1999). Methylglyoxal in living organisms: Chemistry, biochemistry, toxicology and biological implications. Toxicology Letters, 110, 145–175. doi:10.1016/S0378-4274(99)00160-5
  • Kalapos, M. P. (2008). Methylglyoxal and glucose metabolism: A historical perspective and future avenues for research. Drug Metabolism & Drug Interactions, 23, 69–91. doi:10.1515/DMDI.2008.23.1-2.69
  • Kalapos, M. P., Littauer, A., & De Groot, H. (1993). Has reactive oxygen a role in methylglyoxal toxicity? A study on cultured rat hepatocytes. Archives of Toxicology, 67, 369–372. doi:10.1007/BF01973710
  • Kalousova, M., Skrha, J., & Zima, T. (2002). Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiological Research, 51, 597–604.
  • Khan, F., Moinuddin, Mir, A. R., Islam, S., Alam, K., & Ali, A. (2016). Immunochemical studies on HNE-modified HSA: Anti-HNE–HSA antibodies as a probe for HNE damaged albumin in SLE. International Journal of Biological Macromolecules, 86, 145–154. doi:10.1016/j.ijbiomac.2016.01.053
  • Khatoon, F., Moinuddin, Alam, K., & Ali, A. (2012). Physicochemical and immunological studies on 4-hydroxynonenal modified HSA: Implications of protein damage by lipid peroxidation products in the etiopathogenesis of SLE. Human Immunology, 73, 1132–1139. doi:10.1016/j.humimm.2012.08.011
  • Klopfer, A., Spanneberg, R., & Glomb, M. A. (2011). Formation of arginine modifi cations in a model system of N-alpha-tertbutoxycarbonyl (Boc)-arginine with methylglyoxal. Journal of Agricultural & Food Chemistry, 59, 394–401. doi:10.1021/jf103116c
  • Kumar, P. A., Kumar, M. S., & Reddy, G. (2007). Effect of glycation on α-crystallin structure and chaperone-like function. Biochemical Journal, 408, 251–258. doi:10.1042/BJ20070989
  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. doi:10.1038/227680a0
  • Lal, S., Chithra, P., & Chandrakasan, G. (1996). The possible relevance of autoxidative glycosylation in glucose mediated alterations of proteins: An in vitro study on myofibrillar proteins. Molecular and Cellular Biochemistry, 154, 95–100. doi:10.1007/BF00226776
  • Lannuzzi, C., Irace, G., & Sirangelo, I. (2014). Differential effects of glycation on protein aggregation and amyloid formation. Frontiers in Molecular Biosciences, 1, 9. doi:10.3389/fmolb.2014.00009
  • Lemarechal, H., Allanore, Y., Chenevier-Gobeaux, C., Kahan, A., Ekindjian, O. G., & Borderie, D. (2006). Serum protein oxidation in patients with rheumatoid arthritis and effects of infliximab therapy. Clinica Chimica Acta, 372, 147–153. doi:10.1016/j.cca.2006.04.002
  • Lo, T. W. C., Westwood, M. E., McLellan, A. C., Selwood, T., & Thornalley, P. J. (1994). Binding and modifi cation of proteins by methylglyoxal under physiological conditions – a kinetic and mechanistic study with n-alpha-acetylarginine, n-alphaacetylcysteine, and n-alpha-acetyllysine, and bovine serum albumin. Journal of Biological Chemistry, 269, 32299–32305.
  • Loeffler, D. A. (2013). Intravenous immunoglobulin and Alzheimer’s disease: What now? Journal of Neuroinflammation, 10, 70. doi:10.1186/1742-2094-10-70
  • Lyons, T. J. (1993). Glycation and oxidation: A role in the pathogenesis of atherosclerosis. The American Journal of Cardiology, 71, B26–B31. doi:10.1016/0002-9149(93)90142-Y
  • Malhotra, R., Wormald, M. R., Rudd, P. M., Fischer, P. B., Dwek, R. A., & Sim, R. B. (1995). Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nature Medicine, 1, 237–243. doi:10.1038/nm0395-237
  • Mir, A. R., Moinuddin, & Habib, S. (2016). Amorphous aggregate adducts of linker histone H1 turn highly immunologic in the cancers of oesophagus, stomach, gall bladder and ovary. International Journal of Biological Macromolecules, 96, 507–517. doi:10.1016/j.ijbiomac.2016.12.060
  • Mir, A. R., Moinuddin, & Islam, S. (2016). Circulating autoantibodies in cancer patients have high specificity for glycoxidation modified histone H2A. Clinica Chimica Acta, 453, 48–55. doi:10.1016/j.cca.2015.12.004
  • Mir, A. R., Uddin, M., Khan, F., Alam, K., & Ali, A. (2015). Dicarbonyl induced structural perturbations make histone H1 highly immunogenic and generate an auto-immune response in cancer. PLoS ONE, 10, e0136197. doi:10.1371/journal.pone.0136197
  • Monacelli, F., Storace, D., D’Arrigo, C., Sanguineti, R., Borghi, R., Pacini, D., … Traverso, N. (2013). Structural alterations of human serum albumin caused by glycative and oxidative stressors revealed by circular dichroism analysis. International Journal of Molecular Sciences, 14, 10694–10709. doi:10.3390/ijms140610694
  • Munch, G., Schicktanz, D., Behme, A., Gerlach, M., Riederer, P., Palm, D., & Schinzel, R. (1999). Amino acid specificity of glycation and protein-AGE crosslinking reactivities determined with a dipeptide SPOT library. Nature Biotechnology, 17, 1006–1010. doi:10.1038/13704
  • Naeem, A., & Fazili, N. A. (2011). Defective protein folding and aggregation as the basis of neurodegenerative diseases: The darker aspect of proteins. Cell Biochemistry and Biophysics, 61, 237–250. doi:10.1007/s12013-011-9200-x
  • Nemet, I., & Varga-Defterdarović, L. (2007). Methylglyoxal-derived beta-carbolines formed from tryptophan and its derivates in the Maillard reaction. Amino Acids, 32, 291–293.10.1007/s00726-006-0337-7
  • Newman, R., Hariharan, K., Reff, M., Anderson, D. R., Braslawsky, G., Santoro, D., … truneh, A. (2001). Modification of the Fc region of a Primatized IgG antibody to human CD4 retains its ability to modulate CD4 receptors but does not deplete CD4+ T cells in chimpanzees. Clinical Immunology, 98, 164–174. doi:10.1006/clim.2000.4975
  • Pamplona, R. (2011). Advanced lipoxidation end-products. Chemico-Biological Interactions, 192, 14–20. doi:10.1016/j.cbi.2011.01.007
  • Pelton, J. T., & McLean, L. R. (2000). Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry, 277, 167–176. doi:10.1006/abio.1999.4320
  • Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S., & Khan, R. H. (2012). pH-induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochemistry and Biophysics, 62, 487–499. doi:10.1007/s12013-011-9335-9
  • Salahuddin, P., Rabbani, G., & Khan, R. H. (2014). The role of advanced glycation end products in various types of neurodegenerative disease: A therapeutic approach. Cellular and Molecular Biology Letters, 19, 407–437. doi:10.2478/s11658-014-0205-5
  • Shipanova, I. N., Glomb, M. A., & Nagaraj, R. H. (1997). Protein modification by methylglyoxal: Chemical nature and synthetic mechanism of a major fluorescent adduct. Archives of Biochemistry & Biophysics, 344, 29–36. doi:10.1006/abbi.1997.0195
  • Sousa, S. M., Gomes, R. A., Ferreira, A. E., Ponces, F. A., & Cordeiro, C. (2013). The glyoxalase pathway: The first hundred years and beyond. Biochemical Journal, 453, 1–15. doi:10.1042/BJ20121743
  • Stathopulos, P. B., Scholz, G. A., Hwang, Y. M., Rumfeldt, J. A., Lepock, J. R., & Meiering, E. M. (2004). Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Science, 13, 3017–3027. doi:10.1110/ps.04831804
  • Tachibana, H. (2015). Basic equations in statics and kinetics of protein polymerization and the mechanism of the formation and dissociation of amyloid fibrils revealed by pressure perturbation. Subcellular Biochemistry, 72, 279–299. doi:10.1007/978-94-017-9918-8_14
  • Thornalley, P. J. (1996). Pharmacology of methylglyoxal: Formation, modification of proteins and nucleic acids, and enzymatic detoxification–A role in pathogenesis and antiproliferative chemotherapy. General Pharmacology: The Vascular System, 27, 565–573. doi: 10.1016/0306-3623(95)02054-3
  • Thornalley, P. J. (2005). Dicarbonyl intermediates in the Maillard reaction. Annals of the New York Academy of Sciences, 1043, 111–117. doi:10.1196/annals.1333.014
  • Thornalley, P. J. (2008). Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems: Role in aging and disease. Drug Metabolism & Drug Interactions, 23, 125–150. doi:10.1515/DMDI.2008.23.1-2.125
  • Traverso, N., Menini, S., Cottalasso, D., Odetti, P., Marinari, U. M., & Pronzato, M. A. (1997). Mutual interaction between glycation and oxidation during non-enzymatic protein modification. Biochimica et Biophysica Acta (BBA), 1336, 409–418 . Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/936716810.1016/S0304-4165(97)00052-4
  • Uchida, K. (2000). Role of reactive aldehyde in cardiovascular diseases. Free Radical Biology & Medicine, 28, 1685–1696. doi:10.1016/S0891-5849(00)00226-4
  • Vander Jagt, D. L., & Hunsaker, L. A. (2003). Methylglyoxal metabolism and diabetic complications: Roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase. Chemico-Biological Interactions, 143144, 341–351. doi:10.1016/S0009-2797(02)00212-0
  • Vermeer, A. W., & Norde, W. (2000). The thermal stability of immunoglobulin: Unfolding and aggregation of a multi-domain protein. Biophysical Journal, 78, 394–404. doi:10.1016/S0006-3495(00)76602-1
  • Vidarsson, G., Dekkers, G., & Rispens, T. (2014). IgG subclasses and allotypes: From structure to effector functions. Frontiers in Immunology, 5, 520. doi:10.3389/fimmu.2014.00520
  • Wang, H., Meng, Q. H., Gordon, J. R., Khandwala, H., & Wu, L. (2007). Proinflammatory and proapoptotic effects of methylglyoxal on neutrophils from patients with type 2 diabetes mellitus. Clinical Biochemistry, 40, 1232–1239. doi:10.1016/j.clinbiochem.2007.07.016
  • Ward, R. A., & McLeish, K. R. (2004). Methylglyoxal: A stimulus to neutrophil oxygen radical production in chronic renal failure? Nephrology Dialysis Transplantation, 19, 1702–1707. doi:10.1093/ndt/gfh271
  • Watala, C., Pluta, J., Golanski, J., Rozalski, M., Czyz, M., Trojanowski, Z., & Drzewosk, J. (2005). Increased protein glycation in diabetes mellitus is associated with decreased aspirin-mediated protein acetylation and reduced sensitivity of blood platelets to aspirin. Journal of Molecular Medicine (Berlin, Germany), 83, 148–158. doi: 10.1007/s00109-004-0600-x
  • Yla-Herttuala, S., Palinski, W., Butler, S. W., Picard, S., Steinberg, D., & Witztum, J. L. (1994). Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 14, 32–40. doi:10.1161/01.ATV.14.1.32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.