164
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A comprehensive analysis of the computed tautomer fractions of the imidazole ring of histidines in Loligo vulgaris

, &
Pages 3094-3105 | Received 31 Jul 2017, Accepted 04 Sep 2017, Published online: 25 Sep 2017

References

  • Anandakrishn, R., Aguilar, B., & Onufriev, A. V. (2012). H++3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40, W537–W541. doi:10.1093/nar/gks375
  • Bashford, D., Case, D. A., Dalvit, C., Tennant, L., & Wright, P. E. (1993). Electrostatic calculations of side-chain pKa values in myoglobin and comparision with NMR data for histidines. Biochemistry, 32, 8045–8056. doi:10.1021/bi00082a027
  • Bashford, D., & Karplus, M. (1990). pKa’s of ionizable groups in proteins: Atomic detail from a continuum electrostatic model. Biochemistry, 29, 10219–10225. doi:10.1021/bi00496a010
  • Beroza, P., Fredkin, D. R., Okamura, M. Y., & Feher, G. (1991). Protonation of interacting residues in a protein by a Monte Carlo method: Application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proceedings of National Academy of Sciences USA, 88, 5804–5808. doi:10.1073/pnas.88.13.5804
  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., … Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179–5197. doi:10.1021/ja00124a002
  • Couch, V., & Stuchebrukhov, A. (2011). His in continuum electrostatics protonation state calculations. Proteins, 79, 3410–3419. doi:10.1002/prot.23114
  • Demchuk, E., & Wade, R. C. (1996). Improving the continuum dielectric approach to calculating pKas of ionizable groups in proteins. Journal of Physical Chemistry, 100, 17373–17387. doi:10.1021/jp960111d
  • Hass, M. A. S., Hansen, D. F., Christensen, H. E. M., Led, J. J., & Kay, L. E. (2008). Characterization conformational exchange of a histidine side chain: protonation, rotamerization, and tautomerization of His61 plastocyanin from Anabaena variabilis. Journal of the American Chemical Society, 130, 8460–8470. doi:10.1021/ja801330h
  • Machuqueiro, M., & Baptista, A. M. (2009). Molecular dynamics at constant pH and reduction potential: Application to cytochrome c3. Journal of the American Chemical Society, 131, 12586–12594. doi:10.1021/ja808463e
  • Nielsen, J. E., Gunner, M. R., & García-Moreno, B. E. (2011). The pKa cooperative: A collaborative effort to advance structure-based calculations of pKa values and electrostatic effects in proteins. Proteins: Structure. Function, and Bioinformatics, 79, 3249–3259. doi:10.1002/prot.23194
  • Pelton, J. G., Torchia, D. A., Meadow, N. D., & Roseman, S. (1993). Tautomeric states of the active-site histidines of phosphorylated and unphosphorilated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques. Protien Science, 2, 543–558.
  • Popov, A. V., & Vorob’ev, Y. N. (2010). GUI-BioPASED: A program for molecular dynamics simulations of biopolymers with a graphical user interface. Molecular Biology, 44, 648–654. doi:10.1134/S0026893310040217
  • Ripoll, D. R., Vorobjev, Y. N., Liwo, A., Vila, J., & Scheraga, H. A. (1996). Coupling between folding and ionization equilibria. Effects of pH on the conformational preferences of polypeptides. Journal of Molecular Biology, 264, 770–783.
  • Scharff, E. I., Koepke, J., Fritzsch, G., Lücke, C., & Rüterjans, H. (2001). Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris. Structure, 9, 493–502. PII: S0969–2216(01)00601–4
  • Shimba, N., Serber, Z., Ledwidge, R., Miller, S. M., Craik, C. S., & Dötsch, V. (2003). Quantitative identification of the protonation state of histidine in vitro and in vivo. Biochemistry, 42, 9227–9234. doi:10.1021/bi0344679
  • Song, W., Mao, J., & Gunner, M. R. (2009). MCCE2: Improving protein pK calculations with extensive side chain rotamers sampling. Journal of Computational Chemistry, 30, 2231–2247. doi:10.1002/jcc.21222J
  • Sudmeier, J. L., Bradshaw, E. M., Haddad, E. C., Day, R. M., Thalhauser, C. J., Bullock, P. A., & Bachovchin, W. W. (2003). Identification of histidine tautomers in proteins by 2D1H/13Cδ2 one-bond correlated NMR. Journal of the American Chemical Society, 125, 8430–8431.
  • Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., … Markley, J. L. (2008). BioMagResBank. Nucleic Acids Research, 36, D402–D408. doi:10.1093/nar/gkm957
  • Vila, J. A. (2012). Limiting values of the 15N chemical shifts of the imidazole ring of histidine at high pH. Journal of Physical Chemistry B, 116, 6665–6669.
  • Vila, J. A., Arnautova, Y. A., Vorobjev, Y. N., & Scheraga, H. A. (2011). Assessing the fractions of tautomeric forms of the imidazole ring of histidine in proteins as a function of pH. Proceedings of the National Academy of Sciences, 108, 5602–5607. doi:10.1073/pnas.1102373108
  • Vila, J. A., & Scheraga, H. A. (2017). Limiting values of the one-bond C–H spin-spin coupling constants of the imidazole ring of histidine at high-pH. Journal of Molecular Structure, 1134, 576–581.
  • Vorobjev, Y. N. (2012). Potential of mean force of water-proton bath and molecular dynamic simulation of proteins at constant pH. Journal of Computational Chemistry, 33, 832–842. doi:10.1002/jcc.22909
  • Vorobjev, Y. N., & Hermans, J. (1997). SIMS, computation of a smooth invariant molecular surface. Biophysical Journal, 73, 722–732. doi:10.1016/S0006–3495(97)781050
  • Vorobjev, Y. N., & Scheraga, H. A. (1997). A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent. Journal of Computational Chemistry, 18, 569–583. doi:10.1002/(SICI)1096–987X(199703)18:4<569::AIDJCC10>3.0.CO;2-B
  • Vorobjev, Y. N., Vila, J. A., & Scheraga, H. A. (2008). FAMBEpH: A fast and accurate method to compute the total solvation free energies of proteins. The Journal of Physical Chemistry B, 112, 11122–11136. doi:10.1021/jp709969n
  • Vorojev, Y. N., Scherega, H. A., & Vila, J. A. (2017). Coupled molecular dynamic and continuum electrostatic to compute the ionization of protein as function of pH. J Biomol Struct Dyn, 35, 1–14. doi:10.1080/07391102.2017.1288169
  • Witham, S., Talley, K., Wang, L., Zhang, Z., Sarkar, S., Gao, D., & Alexov, E. (2011). Developing hybrid approaches to predict pKa values of ionizable groups. Proteins: Structure. Function, and Bioinformatics, 79, 3389–3399. doi:10.1002/prot.23097
  • Yang, A. S., Gunner, M. R., Sampogna, R., Sharp, K., & Honig, B. (1993). On the calculation of pKa’s in proteins. Proteins., 15, 252–265. doi:10.1002/prot.340150304
  • Yang, S. A., & Honig, B. (1993). On the pH dependence of protein stability. Journal of Molecular Biology, 231, 459–474. doi:10.1006/jmbi.1993.1294

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.