668
Views
5
CrossRef citations to date
0
Altmetric
Research Article

A comprehensive in silico analysis of huntingtin and its interactome

, , , &
Pages 3155-3171 | Received 28 Jul 2017, Accepted 06 Sep 2017, Published online: 28 Sep 2017

References

  • Arndt, J. R., Chaibva, M., & Legleiter, J. (2015). The emerging role of the first 17 amino acids of huntingtin in Huntington’s disease. Biomolecular Concepts, 6, 33–46. doi:10.1515/bmc-2015-0001
  • Artegiani, B., Labbaye, C., Sferra, A., Quaranta, M. T., Torreri, P., Macchia, G., … Macioce, P. (2010). The interaction with HMG20a/b proteins suggests a potential role for beta-dystrobrevin in neuronal differentiation. Journal of Biological Chemistry, 285, 24740–24750. doi:10.1074/jbc.M109.090654
  • Atwal, R. S., Xia, J., Pinchev, D., Taylor, J., Epand, R. M., & Truant, R. (2007). Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Human Molecular Genetics, 16, 2600–2615. doi:10.1093/hmg/ddm217
  • Baliga, B. C., Colussi, P. A., Read, S. H., Dias, M. M., Jans, D. A., & Kumar, S. (2003). Role of prodomain in importin-mediated nuclear localization and activation of caspase-2. Journal of Biological Chemistry, 278, 4899–4905. doi:10.1074/jbc.M211512200
  • Bannister, A. J., Miska, E. A., Görlich, D., & Kouzarides, T. (2000). Acetylation of importin-alpha nuclear import factors by CBP/p300. Current Biology, 10, 467–470.10.1016/S0960-9822(00)00445-0
  • Blum, D., Herrera, F., Francelle, L., Mendes, T., Basquin, M., Obriot, H., … Outeiro, T. F. (2014). Mutant huntingtin alters Tau phosphorylation and subcellular distribution. Human Molecular Genetics, 24, 76–85. doi:10.1093/hmg/ddu421
  • Cattaneo, E., Zuccato, C., & Tartari, M. (2005). Normal huntingtin function: An alternative approach to huntington’s disease Nature Reviews Neuroscience, 6, 919–930. doi:10.1038/nrn1806
  • Chatr-Aryamontri, A., Breitkreutz, B., Heinicke, S., Boucher, L., Winter, A., Stark, C., … Tyers, M. (2013). The BioGRID interaction database: 2013 update. Nucleic Acids Research, 41, D816–D823. doi:10.1093/nar/gks1158
  • Chibalina, M. V., Roberts, R. C., Arden, S. D., Kendrick-Jones, J., & Buss, F. (2008). Rab8-optineurin-myosin VI: Analysis of interactions and functions in the secretory pathway. Methods in Enzymology, 438, 11–24. doi:10.1016/S0076-6879(07)38002-6
  • Chivian, D., Kim, D. E., Malmstrom, L., Bradley, P., Robertson, T., Murphy, P., … Baker, D. (2003). Automated prediction of CASP-5 structures using the Robetta server. Proteins: Structure, Function, and Genetics, 53, 524–533. doi:10.1002/prot.10529
  • Choi, Y. J., Kim, S. I., Lee, J. W., Kwon, Y. S., Lee, H. J., Kim, S. S., & Chun, W. (2012). Suppression of aggregate formation of mutant huntingtin potentiates CREB-binding protein sequestration and apoptotic cell death. Molecular and Cellular Neuroscience, 49, 127–137. doi:10.1016/j.mcn.2011.11.003
  • Colin, E., Zala, D., Liot, G., Rangone, H., Borrell-Pagès, M., Li, X. J., … Humbert, S. (2008). Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. The EMBO Journal, 27, 2124–2134. doi:10.1038/emboj.2008.133
  • Conti, E., & Kuriyan, J. (2000). Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin α. Structure, 8, 329–338.10.1016/S0969-2126(00)00107-6
  • del Toro, D., Alberch, J., Lazaro-Dieguez, F., Martin-Ibanez, R., Xifro, X., Egea, G., & Canals, J. M. (2009). Mutant Huntingtin impairs post-golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Molecular Biology of the Cell, 20, 1478–1492. doi:10.1091/mbc.E08-07-0726
  • Dosztányi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005a). IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21, 3433–3434. doi:10.1093/bioinformatics/bti541
  • Dosztányi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005b). The pairwise energy content estimated from amino acid composition discriminates folded and intrinsically unstructured proteins. Journal of Molecular Biology, 347, 827–839. doi:10.1016/j.jmb.2005.01.071
  • Dosztányi, Z., Mészáros, B., & Simon, I. (2009). Anchor: Web server for predicting protein binding regions in disordered proteins. Bioinformatics, 25, 2745–2746. doi:10.1093/bioinformatics/btp518
  • Dunbrack, R. L., Jr, & Cohen, F. E. (1997). Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Science, 6, 1661–1681. doi:10.1002/pro.5560060807
  • El-Daher, M. T., Hangen, E., Bruyère, J., Poizat, G., Al-Ramahi, I., Pardo, R., … Saudou, F. (2015). Huntingtin proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1dysregulation. The EMBO Journal, 34, 2255–2271. doi:10.15252/embj.201490808
  • Elias, S., McGuire, J. R., Yu, H., & Humbert, S. (2015). Huntingtin is required for epithelial polarity through RAB11A-mediated apical trafficking of PAR3-aPKC. PLOS Biology, 13, e1002142. doi:10.1371/journal.pbio.1002142
  • Fatima, S., Wagstaff, K. M., Lieu, K. G., Davies, R. G., Tanaka, S. S., Yamaguchi, Y. L., … Jans, D. A. (2017). Interactome of the inhibitory isoform of the nuclear transporter Importin 13. Biochimica et Biophysica Acta, 1864, 546–561. doi:10.1016/j.bbamcr.2016.12.017
  • Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., … Punta, M. (2014). Pfam: The protein families database. Nucleic Acids Research, 42, D222–D230. doi:10.1093/nar/gkt1223
  • Finn, R. D., Clements, J., Arndt, W., Miller, B. L., Wheeler, T. J., Schreiber, F., … Eddy, S. R. (2015). HMMER web server: 2015 update. Nucleic Acids Research, 43, W30–W38. doi:10.1093/nar/gkv397
  • Fiser, A., Do, R. K. G., & Sali, A. (2000). Modeling of loops in protein structures. Protein Science, 9, 1753–1773. doi:10.1110/ps.9.9.1753
  • Flicek, P., Amode, M. R., Barrell, D., Beal, K., Billis, K., Brent, S., … Searle, S. M. J. (2014). Ensembl 2014. Nucleic Acids Research, 42, D749–D755. doi:10.1093/nar/gkt1196
  • Fontes, M. R., Teh, T., & Kobe, B. (2000). Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. Journal of Molecular Biology, 297, 1183–1194. doi:10.1006/jmbi.2000.3642
  • Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., … Jensen, L. J. (2013). STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Research, 41, D808–D815. doi:10.1093/nar/gks1094
  • Goehler, H., Lalowski, M., Stelzl, U., Waelter, S., Stroedicke, M., Worm, U., … Wanker, E. E. (2004). A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Molecular Cell, 15, 853–865. doi:10.1016/j.molcel.2004.09.016
  • Gopalakrishnan, C., Jethi, S., Kalsi, N., & Purohit, R. (2016). Biophysical aspect of huntingtin protein during polyQ: An in silico insight. Cell Biochemistry and Biophysics, 74, 129–139. doi:10.1007/s12013-016-0728-7
  • Hattula, K., & Peränen, J. (2000). FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis. Current Biology, 10, 1603–1606.10.1016/S0960-9822(00)00864-2
  • Hirschman, L., Burns, G. A., Krallinger, M., Arighi, C., Cohenn, K. B., Valencia, A., … Winter, A. G. (2012). Text mining for the biocuration workflow. Database, 2012, bas020. doi:10.1093/database/bas020
  • Hügel, S., Depping, R., Dittmar, G., Rother, F., Cabot, R., Sury, M. D., … Bader, M. (2014). Identification of importin α 7 specific transport cargoes using a proteomic screening approach. Molecular & Cellular Proteomics, 13, 1286–1298. doi:10.1074/mcp.M112.026856
  • Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T. K., Bateman, A., … Yong, S. Y. (2012). InterPro in 2011: New developments in the family and domain prediction database. Nucleic Acids Research, 40, D306–D312. doi:10.1093/nar/gkr948
  • Käll, L., Krogh, A., & Sonnhammer, E. L. L. (2004). A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology, 338, 1027–1036. doi:10.1016/j.jmb.2004.03.016
  • Kaufmann, K. W., Lemmon, G. H., DeLuca, S. L., Sheehan, J. H., & Meiler, J. (2010). Practically useful: What the Rosetta protein modeling suite can do for you. Biochemistry, 49, 2987–2998. doi:10.1021/bi902153 g
  • Kehrl, J. M., Sahaya, K., Dalton, H. M., Charbeneau, R. A., Kohut, K. T., Gilbert, K., … Neubig, R. R. (2014). Gain-of-function mutation in Gnao1: A murine model of epileptiform encephalopathy (EIEE17)? Mammalian Genome, 25, 202–210. doi:10.1007/s00335-014-9509-z
  • Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., … Hermjakob, H. (2012). The IntAct molecular interaction database in 2012. Nucleic Acids Research, 40, D841–D846. doi:10.1093/nar/gkr1088
  • Kim, M. W., Chelliah, Y., Kim, S. W., Otwinowski, Z., & Bezprozvanny, I. (2009). Secondary structure of huntingtin amino-terminal region. Structure, 17, 1205–1212. doi:10.1016/j.str.2009.08.002
  • Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32, W526–W531. doi:10.1093/nar/gkh468
  • Kobayashi, J., & Matsuura, Y. (2013). Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin kap121p. Journal of Molecular Biology, 425, 1852–1868. doi:10.1016/j.jmb.2013.02.035
  • Krogh, A., Brown, M., Mian, I. S., Sjolander, K., & Haussler, D. (1994). Hidden markov models in computational biology. applications to protein modeling. Journal of Molecular Biology, 235, 1501–1531. doi:10.1006/jmbi.1994.1104
  • Letunic, I., Doerks, T., & Bork, P. (2014). SMART: Recent updates, new developments and status in 2015. Nucleic Acids Research, 43, D257–D260. doi:10.1093/nar/gku949
  • Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G., & Liu, X. (2007). A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. The EMBO Journal, 26, 402–411. doi:10.1038/sj.emboj.7601519
  • Li, X., Sapp, E., Valencia, A., Kegel, K. B., Qin, Z. H., Alexander, J., … Difiglia, M. (2008). A function of huntingtin in guanine nucleotide exchange on Rab11. NeuroReport, 19, 1643–1647. doi:10.1097/WNR.0b013e328315cd4c
  • Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., & Russell, R. B. (2003). Protein disorder prediction. Structure, 11, 1453–1459. doi:10.1016/j.str.2003.10.002
  • Linding, R., Russell, R. B., Neduva, V., & Gibson, T. J. (2003). GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Research, 31, 3701–3708. doi:10.1093/nar/gkm390
  • Lupas, A., Van Dyke, M., & Stock, J. (1991). Predicting coiled coils from protein sequences. Science, 252, 1162–1164. doi:10.1126/science.252.5009.1162
  • Maiuri, T., Woloshansky, T., Xia, J., & Truant, R. (2013). The huntingtin N17 domain is a multifunctional CRM1 and Ran-dependent nuclear and cilial export signal. Human Molecular Genetics, 22, 1383–1394. doi:10.1093/hmg/dds554
  • Marcé-Grau, A., Dalton, J., López-Pisón, J., García-Jiménez, M. C., Monge-Galindo, L., Cuenca-León, E., … Macaya, A. (2016). GNAO1 encephalopathy: Further delineation of a severe neurodevelopmental syndrome affecting females. Orphanet Journal of Rare Diseases, 11, 23. doi:10.1186/s13023-016-0416-0
  • Mészáros, B., Simon, I., & Dosztányi, Z. (2009). Prediction of protein binding regions in disordered proteins. PLoS Computational Biology, 5, e1000376. doi:10.1371/journal.pcbi.1000376
  • Mitchell, A., Chang, Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., … Finn, R. D. (2014). The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Research, 43(Database issue), D213–D221. doi:10.1093/nar/gku1243
  • Nakamura, K., Kodera, H., Akita, T., Shiina, M., Kato, M., Hoshino, H., … Saitsu, H. (2013). De novo mutations in GNAO1, encoding a Gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. The American Journal of Human Genetics, 93, 496–505. doi:10.1016/j.ajhg.2013.07.014
  • Nuzzo, M. T., & Marino, M. (2016). Estrogen/Huntingtin: A novel pathway involved in neuroprotection. Neural Regeneration Research, 11, 402–403. doi:10.4103/1673-5374.179045
  • Nuzzo, M. T., Fiocchetti, M., Totta, P., Melone, M. A., Cardinale, A., Fusco, F. R., … Marino, M. (2016). Huntingtin polyQ mutation impairs the 17β-estradiol/neuroglobin pathway devoted to neuron survival. Molecular Neurobiology, 54, 6634–6646. doi:10.1007/s12035-016-0337-x
  • Ochaba, J., Lukacsovich, T., Csikos, G., Zheng, S., Margulis, J., Salazar, L., … Steffan, J. S. (2014). Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proceedings of the National Academy of Sciences, 111, 16889–16894. doi:10.1073/pnas.1420103111
  • Pal, A., Severin, F., Lommer, B., Shevchenko, A., & Zerial, M. J. (2006). Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. The Journal of Cell Biology, 172, 605–618. doi:10.1083/jcb.200509091
  • Palidwor, G. A., Shcherbinin, S., Huska, M. R., Rasko, T., Stelzl, U., Arumughan, A., … Foulle, Raphaele (2009). Detection of alpha-rod protein repeats using a neural network and application to Huntingtin. PLoS Computational Biology, 5, e1000304. doi:10.1371/journal.pcbi.1000304
  • Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K., & Obradovic, Z. (2006). Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 7, 208. doi:10.1186/1471-2105-7-208
  • Pierce, B., & Weng, Z. (2007). ZRANK: Reranking protein docking predictions with an optimized energy function. Proteins: Structure, Function, and Bioinformatics, 67, 1078–1086. doi:10.1002/prot.21373
  • Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., & Weng, Z. (2014). ZDOCK server: Interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics, 30, 1771–1773. doi:10.1093/bioinformatics/btu097
  • Potenza, E., Di Domenico, T., Walsh, I., & Tosatto, S. C. (2015). MobiDB 2.0: An improved database of intrinsically disordered and mobile proteins. Nucleic Acids Research, 43(D1), D315–D320. doi:10.1093/nar/gku982
  • Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, J. S., … Sussman, J. L. (2005). FoldIndex©: A simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, 21, 3435–3438. doi:10.1093/bioinformatics/bti537
  • Ratovitski, T., Chighladze, E., Arbez, N., Boronina, T., Herbrich, S., Cole, R. N., & Ross, C. A. (2012). Huntingtin protein interactions altered by polyglutamine expansion as determined by quantitative proteomic analysis. Cell Cycle, 11, 2006–2021. doi:10.4161/cc.20423
  • Ratovitski, T., O’Meally, R. N., Jiang, M., Chaerkady, R., Chighladze, E., Stewart, J. C., … Ross, C. A. (2017). Post-translational modifications (PTMs), identified on endogenous Huntingtin, cluster within proteolytic domains between HEAT repeats. Journal of Proteome Research, 16, 2692–2708. doi:10.1021/acs.jproteome.6b00991
  • Rohl, C. A., Strauss, C. E., Misura, K. M., & Baker, D. (2004). Protein structure prediction using Rosetta. Methods in Enzymology, 383, 66–93. doi:10.1016/S0076-6879(04)83004-0
  • Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., & Dunker, A. K. (2001). Sequence complexity of disordered protein. Proteins: Structure, Function and Genetics, 42, 38–48. doi:10.1002/1097-0134(20010101)42:1
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5, 725–738. doi:10.1038/nprot.2010.5
  • Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234, 779–815. doi:10.1006/jmbi.1993.1626
  • Sanders, S. S., & Hayden, M. R. (2015). Aberrant palmitoylation in Huntington disease. Biochemical Society Transactions, 43, 205–210. doi:10.1042/BST20140242
  • Sanders, S. S., Mui, K. K., Sutton, L. M., & Hayden, M. R. (2014). Identification of binding sites in huntingtin for the huntingtin interacting proteins HIP14 and HIP14L. PLoS ONE, 9, e90669. doi:10.1371/journal.pone.0090669
  • Sangodkar, J., Farrington, C. C., McClinch, K., Galsky, M. D., Kastrinsky, D. B., & Narla, G. (2016). All roads lead to PP2A: Exploiting the therapeutic potential of this phosphatase. FEBS Journal, 283, 1004–1024. doi:10.1111/febs.13573
  • Sarge, K. D., & Park-Sarge, O. K. (2011). SUMO and its role in human diseases. International Review of Cell and Molecular Biology, 288, 167–183.10.1016/B978-0-12-386041-5.00004-2
  • Saudou, F., & Humbert, S. (2016). The biology of Huntingtin. Neuron, 89, 910–926. doi:10.1016/j.neuron.2016.02.003
  • Schaefer, M. H., Fontaine, J. F., Vinayagam, A., Porras, P., Wanker, E., & Andrade-Navarro, M. A. (2012). HIPPIE: Integrating protein interaction networks with experiment based quality scores. PLoS ONE, 7, e31826. doi:10.1371/journal.pone.0031826
  • Seong, I. S., Woda, J. M., Song, J. J., Lloret, A., Abeyrathne, P. D., Woo, C. J., … MacDonald, M. E. (2010). Huntingtin facilitates polycomb repressive complex 2. Human Molecular Genetics, 19, 573–583. doi:10.1093/hmg/ddp524
  • Steffan, J. S., Agrawal, N., Pallos, J., Rockabrand, E., Trotman, L. C., Slepko, N., … Marsh, J. L. (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science, 304, 100–104. doi:10.1126/science.1092194
  • Takano, H., & Gusella, J. F. (2002). The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC Neuroscience, 3, 15. doi:10.1186/1471-2202-3-15
  • Talvik, L., Møller, R. S., Vaher, M., Vaher, U., Larsen, L. H., Dahl, H. A., … Talvik, T. (2015). Clinical phenotype of de novo GNAO1 mutation: Case report and review of literature. Child Neurology Open, 2. doi:10.1177/2329048X15583717
  • Tartari, M., Gissi, C., Lo Sardo, V., Zuccato, C., Picardi, E., Pesole, G., & Cattaneo, E. (2008). Phylogenetic comparison of Huntingtin homologues reveals the appearance of a primitive polyQ in sea urchin. Molecular Biology and Evolution, 25, 330–338. doi:10.1093/molbev/msm258
  • The UniProt Consortium (2014). Activities at the universal protein resource (UniProt). Nucleic Acids Research, 42, D191–D198. doi:10.1093/nar/gkt1140
  • The UniProt Consortium (2015). UniProt: A hub for protein information. Nucleic Acids Research, 43, D204–D212. doi:10.1093/nar/gku989
  • Thompson, L. M., Aiken, C. T., Kaltenbach, L. S., Agrawal, N., Illes, K., Khoshnan, A., … Steffan, J. S. (2009). IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. The Journal of Cell Biology, 187, 1083–1099. doi:10.1083/jcb.200909067
  • Uversky, V. N., Gillespie, J. R., & Fink, A. L. (2000). Why are ‘natively unfolded’ proteins unstructured under physiologic conditions? Proteins: Structure, Function, and Genetics, 41, 415–427. doi:10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7
  • Vijayvargia, R., Epand, R., Leitner, A., Jung, T. Y., Shin, B., Jung, R., … Seong, I. S. (2016). Huntingtin’s spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function. Elife, 5, e11184. doi:10.7554/eLife.11184
  • Walsh, I., Martin, A. J., Di Domenico, T., & Tosatto, S. C. (2012). ESpritz: Accurate and fast prediction of protein disorder. Bioinformatics, 28, 503–509. doi:10.1093/bioinformatics/btr682
  • Warby, S. C., Doty, C. N., Graham, R. K., Carroll, J. B., Yang, Y. Z., Singaraja, R. R., & Hayden, M. R. (2008). Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Human Molecular Genetics, 17, 2390–2404. doi:10.1093/hmg/ddn139
  • Watkin, E. E., Arbez, N., Waldron-Roby, E., O’Meally, R., Ratovitski, T., Cole, R. N., & Ross, C. A. (2014). Phosphorylation of mutant huntingtin at serine 116 modulates neuronal toxicity. PLoS ONE, 9, e88284. doi:10.1371/journal.pone.0088284
  • Webb, B., & Sali, A. (2014). Comparative protein structure modeling using modeller. Current Protocols in Bioinformatics, 5.6.1–5.6.32. doi:10.1002/0471250953.bi0506s47
  • Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., … Shi, Y. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127, 1239–1251. doi:10.1016/j.cell.2006.11.033
  • Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T., … Rost, B. (2014). PredictProtein – an open resource for online prediction of protein structural and functional features. Nucleic Acids Research, 42(Web server issue), W337–W343. doi:10.1093/nar/gku366
  • Yanai, A., Huang, K., Kang, R., Singaraja, R. R., Arstikaitis, P., Gan, L., … Hayden, M. R. (2006). Palmitoylation of Huntingtin by HIP14is essential for its trafficking and function. Nature Neuroscience, 9, 824–831. doi:10.1038/nn1702
  • Yang, Z. R., Thomson, R., McNeil, P., & Esnouf, R. M. (2005). RONN: The bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics, 21, 3369–3376. doi:10.1093/bioinformatics/bti534
  • Zala, D., Hinckelmann, M. V., Yu, H., Lyra da Cunha, M. M., Liot, G., Cordelieres, F. P., & Saudou, F. (2013). Vesicular glycolysis provides on-board energy for fast axonal transport. Cell, 152, 479–491. doi:10.1016/j.cell.2012.12.029
  • Zhang, H., Webb, D. J., Asmussen, H., & Horwitz, A. F. (2003). Synapse formation is regulated by the signaling adaptor GIT1. The Journal of Cell Biology, 161, 131–142. doi:10.1083/jcb.200211002
  • Zhang, Q. C., Petrey, D., Garzón, J. I., Deng, L., & Honig, B. (2013). PrePPI: A structure-informed database of protein–protein interactions. Nucleic Acids Research, 41(Database issue), D828–D833. doi:10.1093/nar/gks1231
  • Zuccato, C., & Cattaneo, E. (2007). Role of brain-derived neurotrophic factor in Huntington’s disease. Progress in Neurobiology, 81, 294–330. doi:10.1016/j.pneurobio.2007.01.003
  • Zuccato, C., Valenza, M., & Cattaneo, E. (2010). Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiological Reviews, 90, 905–981. doi:10.1152/physrev.00041.2009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.