488
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Potential functions of LEA proteins from the brine shrimp Artemia franciscana – anhydrobiosis meets bioinformatics

, ORCID Icon & ORCID Icon
Pages 3291-3309 | Received 08 Aug 2017, Accepted 22 Sep 2017, Published online: 23 Oct 2017

References

  • Aurora, R., & Rose, G. D. (1998). Helix capping. Protein Science, 7(1), 21–38. doi:10.1002/pro.5560070103
  • Battaglia, M., & Covarrubias, A. (2013). Late embryogenesis abundant (LEA) proteins in legumes [Review]. Frontiers in Plant Science, 4(190). doi:10.3389/fpls.2013.00190
  • Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., & Covarrubias, A. A. (2008). The enigmatic LEA proteins and other hydrophilins. Plant Physiology, 148(1), 6–24. doi:10.1104/pp.108.120725
  • Boswell, L. C., Menze, M. A., & Hand, S. C. (2014). Group 3 late embryogenesis abundant proteins from embryos of Artemia franciscana: Structural properties and protective abilities during desiccation. Physiological and Biochemical Zoology, 87(5), 640–651. doi:10.1086/676936
  • Bourhis, J., Canard, B., & Longhi, S. (2007). Predicting protein disorder and induced folding: From theoretical principles to practical applications. Current Protein & Peptide Science, 8, 135–149. doi:10.2174/138920307780363451
  • Bracken, C., Iakoucheva, L. M., Romero, P. R., & Dunker, A. K. (2004). Combining prediction, computation and experiment for the characterization of protein disorder. Current Opinion in Structural Biology, 14(5), 570–576. doi:10.1016/j.sbi.2004.08.003
  • Bremer, A., Wolff, M., Thalhammer, A., & Hincha, D. K. (2017). Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes. The FEBS Journal, 284(6), 919–936. doi:10.1111/febs.14023
  • Browne, J., Tunnacliffe, A., & Burnell, A. (2002). Anhydrobiosis: Plant desiccation gene found in a nematode. Nature, 416(6876), 38. doi:10.1038/416038a
  • Callebaut, I., Labesse, G., Durand, P., Poupon, A., Canard, L., Chomilier, J., & Mornon, J. P. (1997). Deciphering protein sequence information through hydrophobic cluster analysis (HCA): Current status and perspectives. Cellular and Molecular Life Sciences CMLS, 53(8), 621–645. doi:10.1007/s000180050082
  • Chakrabortee, S., Tripathi, R., Watson, M., Schierle, G. S., Kurniawan, D. P., Kaminski, C. F., & Tunnacliffe, A. (2012). Intrinsically disordered proteins as molecular shields. Molecular BioSystems, 8(1), 210–219. doi:10.1039/c1mb05263b
  • Chandonia, J. M., & Karplus, M. (1999). New methods for accurate prediction of protein secondary structure. Proteins, 35, 293–306. doi:10.1002/(SICI)1097-0134(19990515)35:3<293::AID-PROT3>3.0.CO;2-L
  • Cheng, Y., Oldfield, C. J., Meng, J., Romero, P., Uversky, V. N., & Dunker, A. K. (2007). Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry, 46(47), 13468–13477. doi:10.1021/bi7012273
  • Clark, M. S., Thorne, M. A., Purać, J., Grubor-Lajšić, G., Kube, M., Reinhardt, R., & Worland, M. R. (2007). Surviving extreme polar winters by desiccation: Clues from Arctic springtail (Onychiurus arcticus) EST libraries. BMC Genomics, 8(1), 475. doi:10.1186/1471-2164-8-475
  • Coeytaux, K., & Poupon, A. (2005). Prediction of unfolded segments in a protein sequence based on amino acid composition. Bioinformatics, 21(9), 1891–1900. doi:10.1093/bioinformatics/bti266
  • Denekamp, N. Y., Reinhardt, R., Kube, M., & Lubzens, E. (2010). Late embryogenesis abundant (LEA) proteins in nondesiccated, encysted, and diapausing embryos of rotifers. Biology of Reproduction, 82(4), 714–724. doi:10.1095/biolreprod.109.081091
  • Disfani, F. M., Hsu, W. L., Mizianty, M. J., Oldfield, C. J., Xue, B., Dunker, A. K., & Kurgan, L. (2012). MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics, 28(12), i75–i83. doi:10.1093/bioinformatics/bts209
  • Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005a). IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21, 3433–3434. doi:10.1093/bioinformatics/bti541
  • Dosztányi, Z., Csizmók, V., Tompa, P., & Simon, I. (2005b). The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. Journal of Molecular Biology, 347(4), 827–839. doi:10.1016/j.jmb.2005.01.071
  • Dosztányi, Z., Mészáros, B., & Simon, I. (2009). ANCHOR: Web server for predicting protein binding regions in disordered proteins. Bioinformatics, 25(20), 2745–2746. doi:10.1093/bioinformatics/btp518
  • Dunker, A. K., Garner, E., Guilliot, S., Romero, P., Albrecht, K., Hart, J., & Villafranca, J. E. (1998). Protein disorder and the evolution of molecular recognition: Theory, predictions and observations. Pacific Symposium on Biocomputing, 3, 473–484.
  • Dunker, A. K., & Obradovic, Z. (2001). The protein trinity – linking function and disorder. Nature Biotechnology, 19, 805–806. doi:10.1038/nbt0901-805
  • Dunker, A. K., Obradovic, Z., Romero, P., Garner, E. C., & Brown, C. J. (2000). Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform, 11, 161–171.
  • Dunker, A. K., Oldfield, C. J., Meng, J., Romero, P., Yang, J. Y., Chen, J. W., & Uversky, V. N. (2008). The unfoldomics decade: An update on intrinsically disordered proteins. BMC Genomics, 9(Suppl 2), S1. doi:10.1186/1471-2164-9-s2-s1
  • Dure, L., & Chlan, C. (1981). Developmental biochemistry of cottonseed embryogenesis and germination: XII. Purification and properties of principal storage proteins. Plant Physiology, 68(1), 180–186.10.1104/pp.68.1.180
  • Dure, L., & Galau, G. A. (1981). Developmental biochemistry of cottonseed embryogenesis and germination: XIII. Regulation of biosynthesis of principal storage proteins. Plant Physiology, 68(1), 187–194.10.1104/pp.68.1.187
  • Dure, L., Greenway, S. C., & Galau, G. A. (1981). Developmental biochemistry of cottonseed embryogenesis and germination: Changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 20(14), 4162–4168. doi:10.1021/bi00517a033
  • Eisenberg, D., Weiss, R. M., & Terwilliger, T. C. (1982). The helical hydrophobic moment: A measure of the amphiphilicity of a helix. Nature, 299(5881), 371–374. doi:10.1038/299371a0
  • Fauchere, J.-L., & Pliska, V. (1983). Hydrophobic parameters pi of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. European Journal of Medicinal Chemistry, 18(3), 369–375.
  • Furuki, T., Shimizu, T., Kikawada, T., Okuda, T., & Sakurai, M. (2011). Salt effects on the structural and thermodynamic properties of a group 3 LEA protein model peptide. Biochemistry, 50(33), 7093–7103. doi:10.1021/bi200719s
  • Gal, T. Z., Glazer, I., & Koltai, H. (2004). An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Letters, 577(1–2), 21–26. doi:10.1016/j.febslet.2004.09.049
  • Garay-Arroyo, A., Colmenero-Flores, J. M., Garciarrubio, A., & Covarrubias, A. A. (2000). Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry, 275(8), 5668–5674.10.1074/jbc.275.8.5668
  • Garbuzynskiy, S. O., Lobanov, M. Y., & Galzitskaya, O. V. (2004). To be folded or to be unfolded? Protein Science, 13(11), 2871–2877. doi:10.1110/ps.04881304
  • Gautier, R., Douguet, D., Antonny, B., & Drin, G. (2008). HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics, 24(18), 2101–2102. doi:10.1093/bioinformatics/btn392
  • Goyal, K., Tisi, L., Basran, A., Browne, J., Burnell, A., Zurdo, J., & Tunnacliffe, A. (2003). Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. Journal of Biological Chemistry, 278(15), 12977–12984. doi:10.1074/jbc.M212007200
  • Goyal, K., Walton, L. J., & Tunnacliffe, A. (2005). LEA proteins prevent protein aggregation due to water stress. Biochemical Journal, 388(Pt 1), 151–157. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1186703/pdf/bj3880151.pdf. doi:10.1042/BJ20041931
  • Graether, S. P., & Boddington, K. F. (2014). Disorder and function: A review of the dehydrin protein family [Review]. Frontiers in Plant Science, 5(576). doi:10.3389/fpls.2014.00576
  • Grelet, J., Benamar, A., Teyssier, E., Avelange-Macherel, M. H., Grunwald, D., & Macherel, D. (2005). Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiology, 137(1), 157–167. doi:10.1104/pp.104.052480
  • Hand, S. C., Jones, D., Menze, M. A., & Witt, T. L. (2007). Life without water: Expression of plant LEA genes by an anhydrobiotic arthropod. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 307(1), 62–66. doi:10.1002/jez.a.343
  • Hand, S. C., & Menze, M. A. (2015). Molecular approaches for improving desiccation tolerance: Insights from the brine shrimp Artemia franciscana. Planta, 242(2), 379–388. doi:10.1007/s00425-015-2281-9
  • Hand, S. C., Menze, M. A., Toner, M., Boswell, L., & Moore, D. (2011). LEA proteins during water stress: Not just for plants anymore. Annual Review of Physiology, 73, 115–134. doi:10.1146/annurev-physiol-012110-142203
  • Hincha, D. K., & Thalhammer, A. (2012). LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochemical Society Transactions, 40(5), 1000–1003. doi:10.1042/bst20120109
  • Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431–438.10.1016/S1360-1385(01)02052-0
  • Holehouse, A. S., Ahad, J., Das, R. K., & Pappu, R. V. (2015). CIDER: Classification of intrinsically disordered ensemble regions. Biophysical Journal, 108(2), 16–21. doi:10.1016/j.bpj.2014.11.1260
  • Hunault, G., & Jaspard, E. (2010). LEAPdb: A database for the late embryogenesis abundant proteins. BMC Genomics, 11, 221. doi:10.1186/1471-2164-11-221
  • Iakoucheva, L. M., Radivojac, P., Brown, C. J., O’Connor, T. R., Sikes, J. G., Obradovic, Z., & Dunker, A. K. (2004). The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Research, 32(3), 1037–1049. doi:10.1093/nar/gkh253
  • Jaspard, E., Macherel, D., & Hunault, G. (2012). Computational and statistical analyses of amino acid usage and physico-chemical properties of the twelve late embryogenesis abundant protein classes. PLoS ONE, 7(5), e36968. doi:10.1371/journal.pone.0036968
  • Jencks, W. P. (1981). On the attribution and additivity of binding energies. Proceedings of the National Academy of Sciences, 78(7), 4046–4050.10.1073/pnas.78.7.4046
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. doi:10.1002/bip.360221211
  • Käll, L., Krogh, A., & Sonnhammer, E. L. (2004). A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology, 338(5), 1027–1036. doi:10.1016/j.jmb.2004.03.016
  • Kikawada, T., Nakahara, Y., Kanamori, Y., Iwata, K., Watanabe, M., McGee, B., & Tunnacliffe, T. (2006). Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochemical and Biophysical Research Communications, 348(1), 56–61. doi:10.1016/j.bbrc.2006.07.003
  • Kovacs, D., Agoston, B., & Tompa, P. (2008). Disordered plant LEA proteins as molecular chaperones. Plant Signaling & Behavior, 3(9), 710–713.10.4161/psb.3.9.6434
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132.10.1016/0022-2836(82)90515-0
  • Lanzarotti, E., Biekofsky, R. R., Estrin, D. A., Marti, M. A., & Turjanski, A. G. (2011). Aromatic–aromatic interactions in proteins: Beyond the dimer. Journal of Chemical Information and Modeling, 51(7), 1623–1633. doi:10.1021/ci200062e
  • Lemke, E. A. (2011). Structure and function of intrinsically disordered proteins. By Peter Tompa. ChemBioChem, 12(8), 1280–1280. doi:10.1002/cbic.201100142
  • Li, X., Romero, P., Rani, M., Dunker, A. K., & Obradovic, Z. (1999). Predicting protein disorder for N–, C–, and internal regions. Genome Inform Ser Workshop Genome Inform, 10, 30–40.
  • Lieutaud, P., Canard, B., & Longhi, S. (2008). MeDor: A metaserver for predicting protein disorder. BMC Genomics, 9(2), S25. doi:10.1186/1471-2164-9-s2-s25
  • Lieutaud, P., Ferron, F., Uversky, A. V., Kurgan, L., Uversky, V. N., & Longhi, S. (2016). How disordered is my protein and what is its disorder for? A guide through the ‘dark side’ of the protein universe. Intrinsically Disordered Proteins, 4(1), e1259708. doi:10.1080/21690707.2016.1259708
  • Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., & Russell, R. B. (2003). Protein disorder prediction: Implications for structural proteomics. Structure (Camb), 11, 1453–1459. doi:10.1016/j.str.2003.10.002
  • Linding, R., Russell, R. B., Neduva, V., & Gibson, T. J. (2003). GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Research, 31(13), 3701–3708.10.1093/nar/gkg519
  • Lise, S., & Jones, D. T. (2005). Sequence patterns associated with disordered regions in proteins. Proteins, 58(1), 144–150. doi:10.1002/prot.20279
  • Lobley, A., Swindells, M. B., Orengo, C. A., & Jones, D. T. (2007). Inferring function using patterns of native disorder in proteins. PLoS Computational Biology, 3, e162. doi:10.1371/journal.pcbi.0030162
  • MacRae, T. H. (2016). Stress tolerance during diapause and quiescence of the brine shrimp. Cell Stress and Chaperones, 21(1), 9–18. doi:10.1007/s12192-015-0635-7
  • Marunde, M. R., Samarajeewa, D. A., Anderson, J., Li, S., Hand, S. C., & Menze, M. A. (2013). Improved tolerance to salt and water stress in Drosophila melanogaster cells conferred by late embryogenesis abundant protein. Journal of Insect Physiology, 59(4), 377–386. doi:10.1016/j.jinsphys.2013.01.004
  • Meador, W. E., Means, A. R., & Quiocho, F. A. (1992). Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science, 257(5074), 1251–1255.
  • Menze, M. A., Boswell, L., Toner, M., & Hand, S. C. (2009). Occurrence of mitochondria-targeted late embryogenesis abundant (LEA) gene in animals increases organelle resistance to water stress. Journal of Biological Chemistry, 284(16), 10714–10719. doi:10.1074/jbc.C900001200
  • Mészáros, B., Simon, I., & Dosztányi, Z. (2009). Prediction of protein binding regions in disordered proteins. PLoS Computational Biology, 5(5), e1000376. doi:10.1371/journal.pcbi.1000376
  • Moore, D. S., Hansen, R., & Hand, S. C. (2016). Liposomes with diverse compositions are protected during desiccation by LEA proteins from Artemia franciscana and trehalose. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1858(1), 104–115. doi:10.1016/j.bbamem.2015.10.019
  • Mouillon, J. M., Gustafsson, P., & Harryson, P. (2006). Structural investigation of disordered stress proteins. comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiology, 141(2), 638–650. doi:10.1104/pp.106.079848
  • Neupert, W., & Herrmann, J. M. (2007). Translocation of proteins into mitochondria. Annual Review of Biochemistry, 76, 723–749. doi:10.1146/annurev.biochem.76.052705.163409
  • Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., & Dunker, A. K. (2003). Predicting intrinsic disorder from amino acid sequence. Proteins, 53, 566–572. doi:10.1002/prot.10532
  • Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., & Dunker, A. K. (2005). Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins, 61(Suppl 7), 176–182. doi:10.1002/prot.20735
  • Oldfield, C. J., Cheng, Y., Cortese, M. S., Brown, C. J., Uversky, V. N., & Dunker, A. K. (2005). Comparing and combining predictors of mostly disordered proteins. Biochemistry, 44(6), 1989–2000. doi:10.1021/bi047993o
  • Oldfield, C. J., Cheng, Y., Cortese, M. S., Romero, P., Uversky, V. N., & Dunker, A. K. (2005). Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry, 44(37), 12454–12470. doi:10.1021/bi050736e
  • Pace, C. N., & Scholtz, J. M. (1998). A helix propensity scale based on experimental studies of peptides and proteins. Biophysical Journal, 75(1), 422–427.10.1016/S0006-3495(98)77529-0
  • Pammenter, N. B. P. (1999). A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Science Research, 9(1), 13–37.10.1017/S0960258599000033
  • Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K., & Obradovic, Z. (2006). Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 7, 208. doi:10.1186/1471-2105-7-208
  • Peng, Z., Wang, C., Uversky, V. N., & Kurgan, L. (2017). Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind. Methods in Molecular Biology, 1484, 187–203. doi:10.1007/978-1-4939-6406-2_14
  • Popova, A. V., Rausch, S., Hundertmark, M., Gibon, Y., & Hincha, D. K. (2015). The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1854(10 Pt A), 1517–1525. doi:10.1016/j.bbapap.2015.05.002
  • Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, J. S., & Sussman, J. L. (2005). FoldIndex: A simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, 21, 3435–3438. doi:10.1093/bioinformatics/bti537
  • Ptitsyn, O. B. (1995). Molten globule and protein folding. Advances in Protein Chemistry, 47, 83–229.10.1016/S0065-3233(08)60546-X
  • Radivojac, P., Iakoucheva, L. M., Oldfield, C. J., Obradovic, Z., Uversky, V. N., & Dunker, A. K. (2007). Intrinsic disorder and functional proteomics. Biophysical Journal, 92(5), 1439–1456. doi:10.1529/biophysj.106.094045
  • Radivojac, P., Obradovic, Z., Brown, C. J., & Dunker, A. K. (2003). Prediction of boundaries between intrinsically ordered and disordered protein regions. Pacific Symposium on Biocomputing, 8, 216–227.
  • Roise, D., & Schatz, G. (1988). Mitochondrial presequences. The Journal of Biological Chemistry, 263(10), 4509–4511.
  • Romero, P., Obradovic, Z., Kissinger, C. R., Villafranca, J. E., Garner, E., Guilliot, S., & Dunker, A. K. (1998). Thousands of proteins likely to have long disordered regions. Pacific Symposium on Biocomputing, 3, 437–448.
  • Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., & Dunker, A. K. (2001). Sequence complexity of disordered protein. Proteins, 42(1), 38–48.10.1002/(ISSN)1097-0134
  • Schokraie, E., Hotz-Wagenblatt, A., Warnken, U., Mali, B., Frohme, M., Forster, F., & Schnolzer, M. (2010). Proteomic analysis of tardigrades: Towards a better understanding of molecular mechanisms by anhydrobiotic organisms. PLoS ONE, 5(3), e9502. doi:10.1371/journal.pone.0009502
  • Sharon, M. A., Kozarova, A., Clegg, J. S., Vacratsis, P. O., & Warner, A. H. (2009). Characterization of a group 1 late embryogenesis abundant protein in encysted embryos of the brine shrimp Artemia franciscana. Biochemistry and Cell Biology, 87(2), 415–430. doi:10.1139/o09-001
  • Shih, M.-D., Hoekstra, F. A., & Hsing, Y.-I. C. (2008). Late embryogenesis abundant proteins. In K. Jean-Claude & D. Michel (Eds.), Advances in botanical research (Vol. 48, pp. 211–255). Cambridge, MA: Academic Press.
  • Shih, M. D., Hsieh, T. Y., Lin, T. P., Hsing, Y. I., & Hoekstra, F. A. (2010). Characterization of two soybean (Glycine max L.) LEA IV proteins by circular dichroism and fourier transform infrared spectrometry. Plant and Cell Physiology, 51(3), 395–407. doi:10.1093/pcp/pcq005
  • Shimizu, T., Kanamori, Y., Furuki, T., Kikawada, T., Okuda, T., Takahashi, T., & Sakurai, M. (2010). Desiccation-induced structuralization and glass formation of group 3 late embryogenesis abundant protein model peptides. Biochemistry, 49(6), 1093–1104. doi:10.1021/bi901745f
  • Solomon, A., Salomon, R., Paperna, I., & Glazer, I. (2000). Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat-stable protein. Parasitology, 121(Pt 4), 409–416.10.1017/S0031182099006563
  • Spolar, R. S., & Record, M. T., Jr (1994). Coupling of local folding to site-specific binding of proteins to DNA. Science, 263(5148), 777–784.10.1126/science.8303294
  • Steponkus, P. L., Uemura, M., Joseph, R. A., Gilmour, S. J., & Thomashow, M. F. (1998). Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 95(24), 14570–14575. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC24414/pdf/pq014570.pdf. doi:10.1073/pnas.95.24.14570
  • Thalhammer, A., Hundertmark, M., Popova, A. V., Seckler, R., & Hincha, D. K. (2010). Interaction of two intrinsically disordered plant stress proteins (COR15A and COR15B) with lipid membranes in the dry state. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1798(9), 1812–1820. doi:10.1016/j.bbamem.2010.05.015
  • Tolleter, D., Hincha, D. K., & Macherel, D. (2010). A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1798(10), 1926–1933. doi:10.1016/j.bbamem.2010.06.029
  • Tolleter, D., Jaquinod, M., Mangavel, C., Passirani, C., Saulnier, P., Manon, S., & Macherel, D. (2007). Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. The Plant Cell Online, 19(5), 1580–1589. doi:10.1105/tpc.107.050104
  • Tompa, P., & Kovacs, D. (2010). Intrinsically disordered chaperones in plants and animals. Biochemistry and Cell Biology, 88(2), 167–174. doi:10.1139/o09-163
  • Toxopeus, J., Warner, A. H., & MacRae, T. H. (2014). Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause. Cell Stress and Chaperones, 19(6), 939–948. doi:10.1007/s12192-014-0518-3
  • Tunnacliffe, A., Lapinski, J., & McGee, B. (2005). A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia, 546(1), 315–321. doi:10.1007/s10750-005-4239-6
  • Tunnacliffe, A., & Wise, M. J. (2007). The continuing conundrum of the LEA proteins. Naturwissenschaften, 94(10), 791–812. doi:10.1007/s00114-007-0254-y
  • Uverskii, V. N. (1998). How many molten globules states exist? Biofizika, 43(3), 416–421.
  • Uversky, V. N. (1997). Diversity of compact forms of denatured globular proteins. Protein & Peptide Letters, 4, 355–367.
  • Uversky, V. N. (2002). Natively unfolded proteins: A point where biology waits for physics. Protein Science, 11(4), 739–756.10.1110/ps.4210102
  • Uversky, V. N. (2013a). A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Science, 22(6), 693–724. doi:10.1002/pro.2261
  • Uversky, V. N. (2013b). Unusual biophysics of intrinsically disordered proteins. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1834(5), 932–951. doi:10.1016/j.bbapap.2012.12.008
  • Uversky, V. N. (2016). Dancing protein clouds: The strange biology and chaotic physics of intrinsically disordered proteins. Journal of Biological Chemistry, 291(13), 6681–6688. doi:10.1074/jbc.R115.685859
  • Uversky, V. N., & Dunker, A. K. (2010). Understanding protein non-folding. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1804(6), 1231–1264. doi:10.1016/j.bbapap.2010.01.017
  • Uversky, V. N., & Dunker, A. K. (2012a). Intrinsically disordered protein analysis (Vol. 1). New York, NY: Springer.
  • Uversky, V. N., & Dunker, A. K. (2012b). Intrinsically disordered protein analysis (Vol. 2). New York, NY: Springer.
  • Uversky, V. N., Gillespie, J. R., & Fink, A. L. (2000). Why are ‘natively unfolded’ proteins unstructured under physiologic conditions? Proteins: Structure Function, and Bioinformatics, 41(3), 415–427. doi:10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7
  • Uversky, V. N., & Ptitsyn, O. B. (1994). ‘Partly folded’ state, a new equilibrium state of protein molecules: Four-state guanidinium chloride-induced unfolding of beta-lactamase at low temperature. Biochemistry, 33(10), 2782–2791.10.1021/bi00176a006
  • Uversky, V. N., & Ptitsyn, O. B. (1996). Further evidence on the equilibrium ‘pre-molten globule state’: Four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature. Journal of Molecular Biology, 255(1), 215–228. doi:10.1006/jmbi.1996.0018
  • Uversky, V. N., Radivojac, P., Iakoucheva, L. M., Obradovic, Z., & Dunker, A. K. (2007). Prediction of intrinsic disorder and its use in functional proteomics. Methods in Molecular Biology, 408, 69–92.10.1007/978-1-59745-547-3
  • Vucetic, S., Brown, C., Dunker, K., & Obradovic, Z. (2003). Flavors of protein disorder. Proteins, 52, 573–584. doi:10.1002/prot.10437
  • Warner, A. H., Chakrabortee, S., Tunnacliffe, A., & Clegg, J. S. (2012). Complexity of the heat-soluble LEA proteome in Artemia species. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 7(3), 260–267. doi:10.1016/j.cbd.2012.04.002
  • Warner, A. H., Guo, Z. H., Moshi, S., Hudson, J. W., & Kozarova, A. (2016). Study of model systems to test the potential function of Artemia group 1 late embryogenesis abundant (LEA) proteins. Cell Stress and Chaperones, 21(1), 139–154. doi:10.1007/s12192-015-0647-3
  • Warner, A. H., Miroshnychenko, O., Kozarova, A., Vacratsis, P. O., MacRae, T. H., Kim, J., & Clegg, J. S. (2010). Evidence for multiple group 1 late embryogenesis abundant proteins in encysted embryos of Artemia and their organelles. The Journal of Biochemistry, 148(5), 581–592. doi:10.1093/jb/mvq091
  • Wise, M. J., & Tunnacliffe, A. (2004). POPP the question: What do LEA proteins do? Trends in Plant Science, 9(1), 13–17. doi:10.1016/j.tplants.2003.10.012
  • Wright, P. E., & Dyson, H. J. (1999). Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. Journal of Molecular Biology, 293(2), 321–331. doi:10.1006/jmbi.1999.3110
  • Wu, G., Zhang, H., Sun, J., Liu, F., Ge, X., Chen, W. H., & Wang, W. (2011). Diverse LEA (late embryogenesis abundant) and LEA-like genes and their responses to hypersaline stress in post-diapause embryonic development of Artemia franciscana. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 160(1), 32–39. doi:10.1016/j.cbpb.2011.05.005
  • Xie, H., Vucetic, S., Iakoucheva, L. M., Oldfield, C. J., Dunker, A. K., Obradovic, Z., & Uversky, V. N. (2007). Functional anthology of intrinsic disorder. III. Ligands, postranslational modifications and diseases associated with intrinsically disordered proteins. Journal of Proteome Research, 6(5), 1917–1932. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC169197/pdf/gkg519.pdf. doi:10.1021/pr060394e.
  • Yang, Z. R., Thomson, R., McNeil, P., & Esnouf, R. M. (2005). RONN: The bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics, 21, 3369–3376. doi:10.1093/bioinformatics/bti534
  • Yu, J., Lai, Y., Wu, X., Wu, G., & Guo, C. (2016). Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochemical and Biophysical Research Communications, 478(2), 703–709. doi:10.1016/j.bbrc.2016.08.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.