204
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Structural dynamics and interactions of Xeroderma pigmentosum complementation group A (XPA98–210) with damaged DNA

& ORCID Icon
Pages 3341-3353 | Received 23 Jun 2017, Accepted 25 Sep 2017, Published online: 25 Oct 2017

References

  • Amr, K., Messaoud, O., El Darouti, M., Abdelhak, S., & El-Kamah, G. (2014). Mutational spectrum of Xeroderma pigmentosum group A in Egyptian patients. Gene, 533(1), 52–56. doi:10.1016/j.gene.2013.09.125
  • Bartels, C. L., & Lambert, M. W. (2007). Domains in the XPA protein important in its role as a processivity factor. Biochemical and Biophysical Research Communications, 356(1), 219–225. doi:10.1016/j.bbrc.2007.02.125
  • Barve, A., Ghaskadbi, S., & Ghaskadbi, S. (2013). Structural and sequence similarities of hydra Xeroderma pigmentosum a protein to human homolog suggest early evolution and conservation. BioMed Research International, 2013, 1–9. doi:10.1155/2013/854745
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. doi:10.1093/nar/28.1.235
  • Bernardes de Jesus, B. M., Bjoras, M., Coin, F., & Egly, J. M. (2008). Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC. Molecular and Cellular Biology, 28(23), 7225–7235. doi:10.1128/mcb.00781-08
  • Buchko, G. W., Daughdrill, G. W., de Lorimier, R., Sudha Rao, B. K., Isern, N. G., Lingbeck, J. M., … Kennedy, M. A. (1999). Interactions of human nucleotide excision repair protein XPA with DNA and RPA70ΔC327: Chemical shift mapping and15N NMR relaxation studies. Biochemistry, 38(46), 15116–15128. doi:10.1021/bi991755p
  • Buchko, G. W., Ni, S., Thrall, B. D., & Kennedy, M. A. (1998). Structural features of the minimal DNA binding domain (M98-F219) of human nucleotide excision repair protein XPA98-210. Nucleic Acids Research, 26(11), 2779–2788. doi:10.1093/nar/26.11.2779
  • Buchko, G. W., Tung, C. S., McAteer, K., Isern, N. G., Spicer, L. D., & Kennedy, M. A. (2001). DNA–XPA interactions: a 31P NMR and molecular modeling study of dCCAATAACC association with the minimal DNA-binding domain (M98–F219) of the nucleotide excision repair protein XPA. Nucleic Acids Research, 29(12), 2635–2643. doi:10.1093/nar/29.12.2635
  • Camenisch, U., Dip, R., Schumacher, S. B., Schuler, B., & Naegeli, H. (2006). Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair. Nature Structural & Molecular Biology, 13(3), 278–284. doi:10.1038/nsmb1061
  • Camenisch, U., Dip, R., Vitanescu, M., & Naegeli, H. (2007). Xeroderma pigmentosum complementation group A protein is driven to nucleotide excision repair sites by the electrostatic potential of distorted DNA. DNA Repair, 6(12), 1819–1828. doi:10.1016/j.dnarep.2007.07.011
  • Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., … Kollman, P. A. (2011). AMBER 12. San Francisco: University of California
  • Cleaver, E. J., & States, J. C. (1997). The DNA damage-recognition problem in human and other eukaryotic cells: The XPA damage binding protein. Biochemical Journal, 328(1), 1–12. doi:10.1042/bj3280001
  • Cleaver, J. E. (2005). Opinion: Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature Reviews Cancer, 5(7), 564–573. doi:10.1038/nrc1652
  • Cleaver, J. E., Lam, E. T., & Revet, I. (2009). Disorders of nucleotide excision repair: The genetic and molecular basis of heterogeneity. Nature Reviews Genetics, 10(11), 756–768. doi:10.1038/nrg2663
  • Costa, R. M., Chiganças, V., da Silva Galhardo, R., Carvalho, H., & Menck, C. F. (2003). The eukaryotic nucleotide excision repair pathway. Biochimie, 85(11), 1083–1099. doi:10.1016/j.biochi.2003.10.017
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Daughdrill, G. W., Buchko, G. W., Botuyan, M. V., Arrowsmith, C., Wold, M. S., Kennedy, M. A., & Lowry, D. F. (2003). Chemical shift changes provide evidence for overlapping single-stranded DNA-and XPA-binding sites on the 70 kDa subunit of human replication protein A. Nucleic Acids Research, 31(14), 4176–4183. doi:10.1093/nar/gkg451
  • Dexheimer, T. S. (2013). DNA repair pathways and mechanisms. In L. A. Mathews, S. M. Cabarcas, E. M. Hurt (Eds.), DNA repair of cancer stem cells (pp. 19–32). Dordrecht, Netherlands: Springer. doi:10.1007/978-94-007-4590-2_2
  • DiGiovanna, J. J. & Kraemer, K. H. (2012). Shining a light on Xeroderma pigmentosum. Journal of Investigative Dermatology, 132(3), 785–796. doi:10.1038/jid.2011.426
  • Fadda, E. (2016). Role of the XPA protein in the NER pathway: A perspective on the function of structural disorder in macromolecular assembly. Computational and Structural Biotechnology Journal, 14, 78–85. doi:10.1016/j.csbj.2015.11.007
  • Fassihi, H., Sethi, M., Fawcett, H., Wing, J., Chandler, N., Mohammed, S., … Henshaw, T. (2016). Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect. Proceedings of the National Academy of Sciences, 113(9), E1236–E1245. doi:10.1073/pnas.1519444113
  • Feltes, B. C. & Bonatto, D. (2015). Overview of xeroderma pigmentosum proteins architecture, mutations and post-translational modifications. Mutation Research/Reviews in Mutation Research, 763, 306–320. doi:10.1016/j.mrrev.2014.12.002
  • Fuss, J. O. & Tainer, J. A. (2011). XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair, 10(7), 697–713. doi:10.1016/j.dnarep.2011.04.028
  • Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O. … Cerami, E. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), l1. doi:10.1126/scisignal.2004088
  • Ghafouri-Fard, S., Fardaei, M., & Miryounesi, M. (2016). A novel 5 nucleotide deletion in XPA gene is associated with severe neurological abnormalities. Gene, 576(1), 379–380. doi:10.1016/j.gene.2015.08.039
  • Gillet, L. C. J. & Schärer, O. D. (2006). Molecular mechanisms of mammalian global genome nucleotide excision repair. Chemical Reviews, 106(2), 253–276. doi:10.1021/cr040483f
  • Gu, Y., Chang, X., Dai, S., Song, Q., Zhao, H., & Lei, P. (2017, June 29). Identification of four novel XPC mutations in two xeroderma pigmentosum complementation group C patients and functional study of XPC Q320X mutant. Gene, 628, 162–169. pii: S0378-1119(17)30507-3. doi:10.1016/j.gene.2017.06.057
  • Hilton, B., Shkriabai, N., Musich, P. R., Kvaratskhelia, M., Shell, S., & Zou, Y. (2014). A new structural insight into XPA–DNA interactions. Bioscience Reports, 34(6), 831–840. doi:10.1042/bsr20140158
  • Hoeijmakers, J. H. (1993). Nucleotide excision repair II: from yeast to mammals. Trends in Genetics, 9(6), 211–217. doi:10.1016/0168-9525(93)90121-w
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and BioinformaticsProteins: Structure, Function, and Bioinformatics, 65(3), 712–725. doi:10.1002/prot.21123
  • Hu, J., Hu, Z., Zhang, Y., Gou, X., Mu, Y., Wang, L., & Xie, X. Q. (2016). Metal binding mediated conformational change of XPA protein: A potential cytotoxic mechanism of nickel in the nucleotide excision repair. Journal of Molecular Modeling, 227, 1–19. doi:10.1007/s00894-016-3017-x
  • Ikegami, T., Kuraoka, I., Saijo, M., Kodo, N., Kyogoku, Y., Morikawa, K., … Shirakawa, M. (1998). Solution structure of the DNA- and RPA-binding domain of the human repair factor XPA. Nature Structural & Molecular Biology, 5(8), 701–706. doi:10.1038/1400
  • Ikegami, T., Kuraoka, I., Saijo, M., Kodo, N., Kyogoku, Y., Morikawa, K., … Shirakawa, M. (1999). Resonance assignments, solution structure, and backbone dynamics of the DNA- and RPA-binding domain of human repair factor XPA. Journal of Biochemistry, 125(3), 495–506. doi:10.1093/oxfordjournals.jbchem.a022313
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. doi:10.1063/1.445869
  • Kang, T. H., Reardon, J. T., & Sancar, A. (2010). Regulation of nucleotide excision repair activity by transcriptional and post-transcriptional control of the XPA protein. Nucleic Acids Research, 39(8), 3176–3187. doi:10.1093/nar/gkq1318
  • Koch, S. C., Kuper, J., Gasteiger, K. L., Simon, N., Strasser, R., Eisen, D., … Carell, T. (2015). Structural insights into the recognition of cisplatin and AAF-dG lesion by Rad14 (XPA). Proceedings of the National Academy of Sciences, 112(27), 8272–8277. doi:10.1073/pnas.1508509112
  • Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Petruseva, I. O., & Lavrik, O. I. (2010). Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Research, 38(22), 8083–8094. doi:10.1093/nar/gkq649
  • Kuraoka, I., Morita, E. H., Saijo, M., Matsuda, T., Morikawa, K., Shirakawa, M., & Tanaka, K. (1996). Identification of a damaged-DNA binding domain of the XPA protein. Mutation Research/DNA Repair, 362(1), 87–95. doi:10.1016/0921-8777(95),00038-0
  • Lehmann, A. R. (2012). DNA repair, DNA replication and human disorders: A personal journey. DNA Repair, 11(4), 328–334. doi:10.1016/j.dnarep.2011.05.008
  • Li, C.-L., Golebiowski, F. M., Onishi, Y., Samara, N. L., Sugasawa, K., & Yang, W. (2015). Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Molecular Cell, 59(6), 1025–1034. doi:10.1016/j.molcel.2015.08.012
  • Li, L., Elledge, S. J., Peterson, C. A., Bales, E. S., & Legerski, R. J. (1994). Specific association between the human DNA repair proteins XPA and ERCC1. Proceedings of the National Academy of Sciences, 91(11), 5012–5016. doi:10.1073/pnas.91.11.5012
  • Li, L., Lu, X., Peterson, C. A., & Legerski, R. J. (1995). An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Molecular and Cellular Biology, 15(10), 5396–5402. doi:10.1128/mcb.15.10.5396
  • Liu, J., Zhang, Z., Cao, X. L., Lei, D. P., Wang, Z. Q., Jin, T., & Pan, X. L. (2012). XPA A23G polymorphism and susceptibility to cancer: A meta-analysis. Molecular Biology Reports, 39(6), 6791–6799. doi:10.1007/s11033-012-1504-4
  • Mer, G., Bochkarev, A., Gupta, R., Bochkareva, E., Frappier, L., Ingles, C. J., … Chazin, W. J. (2000). Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell, 103(3), 449–456. doi:10.1016/s0092-8674(00),00136-7
  • Min, J.-H., & Pavletich, N. P. (2007). Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature, 449(7162), 570–575. doi:10.1038/nature06155
  • Morita, E. H., Ohkubo, T., Kuraoka, I., Shirakawa, M., Tanaka, K., & Morikawa, K. (1996). Implications of the zinc-finger motif found in the DNA-binding domain of the human XPA protein. Genes to Cells, 1(5), 437–442. doi:10.1046/j.1365-2443.1996.d01-252.x
  • Naegeli, H., & Sugasawa, K. (2011). The xeroderma pigmentosum pathway: Decision tree analysis of DNA quality. DNA Repair, 10(7), 673–683. doi:10.1016/j.dnarep.2011.04.019
  • Nocentini, S., Coin, F., Saijo, M., Tanaka, K., & Egly, J.-M. (1997). DNA damage recognition by XPA protein promotes efficient recruitment of transcription factor II H. Journal of Biological Chemistry, 272(37), 22991–22994. doi:10.1074/jbc.272.37.22991
  • Nouspikel, T. (2008). Nucleotide excision repair and neurological diseases. DNA Repair, 7(7), 1155–1167. doi:10.1016/j.dnarep.2008.03.015
  • O’Donovan, A., Davies, A. A., Moggs, J. G., West, S. C., & Wood, R. D. (1994). XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature, 371(6496), 432–435. doi:10.1038/371432a0
  • Park, H., Zhang, K., Ren, Y., Nadji, S., Sinha, N., Taylor, J.-S., & Kang, C. (2002). Crystal structure of a DNA decamer containing a cis-syn thymine dimer. Proceedings of the National Academy of Sciences, 99(25), 15965–15970. doi:10.1073/pnas.242422699
  • Patrick, S. M., & Turchi, J. J. (2002). Xeroderma pigmentosum complementation group A protein (XPA) modulates RPA–DNA interactions via enhanced complex stability and inhibition of strand separation activity. Journal of Biological Chemistry, 277(18), 16096–16101. doi:10.1074/jbc.m200816200
  • Pérez, A., Marchán, I., Svozil, D., Sponer, J., Cheatham, T. E., Laughton, C. A., & Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ Conformers. Biophysical Journal, 92(11), 3817–3829. doi:10.1529/biophysj.106.097782
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084
  • Qian, B., Zhang, H., Zhang, L., Zhou, X., Yu, H., & Chen, K. (2011). Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer, 73(2), 138–146. doi:10.1016/j.lungcan.2010.11.018
  • Rabik, C. A., & Dolan, M. E. (2007). Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treatment Reviews, 33(1), 9–23. doi:10.1016/j.ctrv.2006.09.006
  • Riedl, T., Hanaoka, F., & Egly, J. M. (2003). The comings and goings of nucleotide excision repair factors on damaged DNA. The EMBO Journal, 22(19), 5293–5303. doi:10.1093/emboj/cdg489
  • Ritchie, D. W., & Kemp, G. J. (2000). Protein docking using spherical polar Fourier correlations. Proteins: Structure, Function, and Bioinformatics, 39(2), 178–194. doi:10.1002/(sici)1097-0134(20000501)39:2%3C178::aid-prot8%3E3.3.co;2-y
  • Ritchie, D. W., Kozakov, D., & Vajda, S. (2008). Accelerating and focusing protein–protein docking correlations using multi-dimensional rotational FFT generating functions. Bioinformatics, 24(17), 1865–1873. doi:10.1093/bioinformatics/btn334
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. doi:10.1021/ct400341p
  • Rose, P. W., Prlić, A., Altunkaya, A., Bi, C., Bradley, A. R., Christie, C. H., … Burley, S. K. (2017). The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Research, 45(D1), D271–D281. doi:10.1093/nar/gkw1000
  • Rouillon, C., & White, M. F. (2011). The evolution and mechanisms of nucleotide excision repair proteins. Research in Microbiology, 162(1), 19–26. doi:10.1016/j.resmic.2010.09.003
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of thecartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. doi:10.1016/0021-9991(77),90098-5
  • Sagendorf, J. M., Berman, H. M., & Rohs, R. (2017). DNAproDB: An interactive tool for structural analysis of DNA–protein complexes. Nucleic Acids Research, 45 (W1), W89−W97. doi:10.1093/nar/gkx272
  • Saijo, M., Takedachi, A., & Tanaka, K. (2010). Nucleotide excision repair by mutant Xeroderma pigmentosum group A (XPA) proteins with deficiency in interaction with RPA. Journal of Biological Chemistry, 286(7), 5476–5483. doi:10.1074/jbc.m110.172916
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. doi:10.1021/ct400314y
  • Scharer, O. D. (2013). Nucleotide excision repair in eukaryotes. Cold Spring harbor perspectives in biology, 5(10), a012609–a012609. doi:10.1101/cshperspect.a012609
  • Sehgal, M., & Singh, T. R. (2014). Systems biology approach for mutational and site-specific structural investigation of DNA repair genes for xeroderma pigmentosum. Gene, 543(1), 108–117. doi:10.1016/j.gene.2014.03.057
  • Sethi, M., Haque, S., Fawcett, H., Wing, J. F., Chandler, N., Mohammed, S., … Sarkany, R. P. (2016). A group A: Surprisingly mild phenotype highly prevalent in northern India/Pakistan/Afghanistan. The Journal of Investigative Dermatology, 136(4), 869–872. doi:10.1016/j.jid.2015.12.031
  • Shell, S. M., & Chazin, W. J. (2012). XPF-ERCC1: On the bubble. Structure, 20(4), 566–568. doi:10.1016/j.str.2012.03.004
  • Shimamoto, T., Tanimura, T., Yoneda, Y., Kobayakawa, Y., Sugasawa, K., Hanaoka, F., … Kohno, K. (1995). Expression and functional analyses of the Dxpa gene, the drosophila homolog of the human excision repair gene XPA. Journal of Biological Chemistry, 270(38), 22452–22459. doi:10.1074/jbc.270.38.22452
  • Shivji, M. K. K., Moggs, J. G., Kuraoka, I., & Wood, R. D. (1999). Dual-incision assays for nucleotide excision repair using DNA with a lesion at a specific site. In D. S. Henderson (Eds.), DNA repair protocols: Eukaryotic systems (pp. 373–392).Totowa, NJ: Humana Press. doi:10.1007/978-1-4612-1608-7_30
  • Shuck, S. C., Short, E. A., & Turchi, J. J. (2008). Eukaryotic nucleotide excision repair: From understanding mechanisms to influencing biology. Cell Research, 18(1), 64–72. doi:10.1038/cr.2008.2
  • Solovyev, A. Y., Tarnovskaya, S. I., Chernova, I. A., Shataeva, L. K., & Skorik, Y. A. (2015). The interaction of amino acids, peptides, and proteins with DNA. International Journal of Biological Macromolecules, 78, 39–45. doi:10.1016/j.ijbiomac.2015.03.054
  • Spector, T. I., Cheatham, T. E., & Kollman, P. A. (1997). Unrestrained molecular dynamics of photodamaged DNA in aqueous solution. Journal of the American Chemical Society, 119(30), 7095–7104. doi:10.1021/ja964372c
  • Staresincic, L., Fagbemi, A. F., Enzlin, J. H., Gourdin, A. M., Wijgers, N., Dunand-Sauthier, I., … Schärer, O. D. (2009). Coordination of dual incision and repair synthesis in human nucleotide excision repair. The EMBO Journal, 28(8), 1111–1120. doi:10.1038/emboj.2009.49
  • States, J. C., McDuffie, E. R., Myrand, S. P., McDowell, M., & Cleaver, J. E. (1998). Distribution of mutations in the human xeroderma pigmentosum group A gene and their relationships to the functional regions of the DNA damage recognition protein. Human Mutation, 12(2), 103–113. doi:10.1002/(sici)1098-1004(1998)12:2%3C103::aid-humu5%3E3.0.co;2-6
  • Sugasawa, K., Ng, J. M., Masutani, C., Iwai, S., van der Spek, P. J., Eker, A. P., … Hoeijmakers, J. H. (1998). Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Molecular Cell, 2(2), 223–232. doi:10.1016/s1097-2765(00),80132-x
  • Sugitani, N., Shell, S. M., Soss, S. E., & Chazin, W. J. (2014). Redefining the DNA-binding domain of human XPA. Journal of the American Chemical Society, 136(31), 10830–10833. doi:10.1021/ja503020f
  • Takahashi, Y., Endo, Y., Kusaka-Kikushima, A., Nakamaura, S., Nakazawa, Y., Ogi, T., … Moriwaki, S. (2016). An XPA gene splicing mutation resulting in trace protein expression in an elderly patient with xeroderma pigmentosum group A without neurological abnormalities. British Journal of Dermatology, 177, 253–257. doi:10.1111/bjd.15051
  • Tanaka, K., Okada, Y., Kondo, S., Satokata, I., & Satoh, Y. (1990). Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature, 348(6296), 73–76. doi:10.1038/348073a0
  • Truglio, J. J., Croteau, D. L., Van Houten, B., & Kisker, C. (2006). Prokaryotic nucleotide excision repair: The UvrABC system. Chemical Reviews, 106(2), 233–252. doi:10.1021/cr040471u
  • Tsodikov, O. V., Ivanov, D., Orelli, B., Staresincic, L., Shoshani, I., Oberman, R., … Ellenberger, T. (2007). Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA98-210. The EMBO Journal, 26(22), 4768–4776. doi:10.1038/sj.emboj.7601894
  • Uchida, A., Sugasawa, K., Masutani, C., Dohmae, N., Araki, M., Yokoi, M., … Hanaoka, F. (2002). The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. DNA Repair, 1(6), 449–461. doi:10.1016/s1568-7864(02),00031-9
  • Vermeulen, W., de Boer, J., Citterio, E., van Gool, A. J., van der Horst, G. T. J., Jaspers, N. G. J., … Hoeijmakers, J. H. J. (1997). Mammalian nucleotide excision repair and syndromes. Biochemical Society Transactions, 25(1), 309–315. doi:10.1042/bst0250309
  • Wakasugi, M., Kasashima, H., Fukase, Y., Imura, M., Imai, R., Yamada, S., … Matsunaga, T. (2008). Physical and functional interaction between DDB and XPA in nucleotide excision repair. Nucleic Acids Research, 37(2), 516–525. doi:10.1093/nar/gkn964
  • Westbrook, J. (2003). The protein data bank and structural genomics. Nucleic Acids Research, 31(1), 489–491. doi:10.1093/nar/gkg068
  • Yang, Z., Roginskaya, M., Colis, L. C., Basu, A. K., Shell, S. M., Liu, Y., Musich, P. R., Harris, C. M., Harris, T. M., & Zou, Y. (2006). Specific and efficient binding of Xeroderma pigmentosum complementation group A to double-strand/single-strand DNA junctions with 3′- and/or 5′-ssDNA branches. Biochemistry, 45(51), 15921–15930. doi:10.1021/bi061626q.
  • Yokoi, M., Masutani, C., Maekawa, T., Sugasawa, K., Ohkuma, Y., & Hanaoka, F. (2000). The Xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. Journal of Biological Chemistry, 275(13), 9870–9875. doi:10.1074/jbc.275.13.9870.
  • You, J. S., Wang, M., & Lee, S. H. (2002). Biochemical analysis of the damage recognition process in nucleotide excision repair. Journal of Biological Chemistry, 278(9), 7476–7485. doi:10.1074/jbc.m210603200
  • Zgarbová, M., Otyepka, M., Sponer, J., Mládek, A., Banás, P., Cheatham III, T. E., & Jurecka, P. (2011). Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. Journal of Chemical Theory and Computation, 7(9), 2886–2902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.