236
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Modulation of interaction of mutant TP53 and wild type BRCA1 by alkaloids: a computational approach towards targeting protein-protein interaction as a futuristic therapeutic intervention strategy for breast cancer impediment

, , , &
Pages 3376-3387 | Received 30 Jun 2017, Accepted 25 Sep 2017, Published online: 23 Oct 2017

References

  • Andreas, C. J., Matthias, R. B., Rainer, W., Matthias, G. J. B., Hannes, H., Thomas, E. E., … Alan, R. F. (2015). Exploiting transient protein states for the design of small-molecule stabilizers of mutant p53. Structure, 23, 2246–2255.
  • Arkin, M. R., Tang, Y., & Wells, J. A. (2014). Small-molecule inhibitors of protein-protein interactions:Progressing towards the reality. Chemical Biology, 21, 1102–1114.
  • Bendl, J., Stourac, J., Sebestova, E., Vavra, O., Musil, M., Brezovsky, J., & Damborsky, J. (2016). HotSpot Wizard 2.0: Automated design of site-specific mutations and smart libraries in protein engineering. Nucleic Acids Research, 44, W479–W487.10.1093/nar/gkw416
  • Bogan, A. A., & Thorn, K. S. (1998). Anatomy of hot spots in protein interfaces. Journal of Molecular Biology, 280, 1–9.10.1006/jmbi.1998.1843
  • Chen P. (2003). Inhibiting the p53–MDM2 interaction: An important target for cancer therapy. Nature Reviews, 3, 102–109.
  • Chen, R., Li, L., & Weng, Z. (2003). ZDOCK: An initial-stage protein-docking algorithm. Proteins: Structure, Function, and Genetics, 52, 80–87.10.1002/(ISSN)1097-0134
  • Cho, K. I., Kim, D., & Lee, D. (2009). A feature based approach to modelling protein–protein interaction hot spots. Nucleic Acids Research, 37, 2672–2687.10.1093/nar/gkp132
  • Cukurgolu, E., Engin, H. B., Gursoy, A., & Keskin, O. (2014). Hot spots in protein–protein interfaces: Towards drug discovery. Progress in Biophysics & Molecular Biology, 30, 1–9.
  • Ferrari S., Pellati F., & Costi M. P. (2013). Protein–protein interaction inhibitors: Case studies on small molecules and natural compounds. S. Mangani (Ed.), Disruption of protein–protein interfaces (pp. 31–60). Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-642-37999-4_2
  • Fink, F., Ederer, S., & Gronwald, W. (2009). Protein–protein interaction analysis by docking. algorithms, 2, 429–436. doi:10.3390/a2010429
  • Freed-Pastor W. A., & Prives C. (2012). Mutant p53: One name, many proteins. Genes & Development, 26, 1268–1286.10.1101/gad.190678.112
  • French, C. A., Ramirez, C. L., Kolmakova, J., Hickman, T. T., Cameron, M. J., Thyne, M. E., … Aster, J. C. (2008). BRD-NUT oncoproteins: A family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene, 27, 2237–2242.10.1038/sj.onc.1210852
  • Goldstein, I., Marcel, V., Olivier, M., Oren, M., Rotter, V., & Hainaut, P. (2011). Understanding wild-type and mutant p53 activities in human cancer: New landmarks on the way to targeted therapies. Cancer Gene Therapy, 18, 2–11.10.1038/cgt.2010.63
  • Greenblatt, M. S., Chappuis, P. O., Bond, J. P., Hamel, N., & Foulkes, W. D. (2001). TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: Distinctive spectrum and structural distribution. Cancer Research, 61, 4092–4097.
  • Grosdidier, S., & Fernández-Recio, J. (2012). Protein–protein docking and hot-spot prediction for drug discovery. Current Pharmaceutical Design, 18, 4607–4618.10.2174/138161212802651599
  • Guo W., Wisniewisky J. A., & Ji H. (2014). Hot Spot based design of small molecule inhibitors for protein–protein intercations. Bioorganic & Medicinal Chemistry Letters, 30, 2546–2554.
  • Heidorn, S. J., Milagre, C., Whittaker, S., Nourry, A., Niculescu-Duvas, I., Dhomen, N., … Marais, R. (2010). Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell, 140, 209–221.10.1016/j.cell.2009.12.040
  • Hoe, K. K., Verma, C. S., & Lane, D. P. (2014). Drugging p53 pathway: Understanding the route to clinical efficacy. Drug Discovery, 13, 214–236. 10.1038/nrd4236
  • Ivanov, A. A., Khuri, F. R., & Fu, H. (2013). Targeting protein–protein interactions as an anticancer strategy. Trends in Pharmacological Sciences, 34, 393–400.10.1016/j.tips.2013.04.007
  • Jiang J., Yang E. S., Jiang G., Nowsheen S., Wang H., Wang T., … Xia F. (2011). p53-dependent BRCA1 nuclear export controls cellular susceptibility to DNA damage. Cancer Research, 71, 5546–5557.
  • Jin, L., Wieru, W., & Fang, G. (2014). Targeting protein–protein interaction by small moleculesprotein–protein. Annual Review of Pharmacology & Toxicology, 54, 435–456.10.1146/annurev-pharmtox-011613-140028
  • Joerger, A. C., & Fersht, A. R. (2007). Structure–function–rescue: The diverse nature of common p53 cancer mutants. Oncogene, 26, 2226–2242.10.1038/sj.onc.1210291
  • Joerger, A. C., Bauer, M. R., Wilcken, R., Boeckler, F. M., Spencer, J., & Frsht, A. R. (2015). Exploiting transient protein states for the design of small-molecule stabilizers of mutant p53. Structure, 23, 2246–2255.10.1016/j.str.2015.10.016
  • Jubb, H., Blundell, T. L., & Acher, D. B. (2015). Flexibility and small pockets at protein protein interfaces: New insights into druggability. Progress in Biophysics and Molecular Biology, 119, 2–9.
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., … Donini, O. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33, 889–897.10.1021/ar000033j
  • Konkimalla, V. B., & Efferth, T. (2009). Inhibition of epidermal growth factor receptor over-expressing cancer cells by the aphorphine-type isoquinoline alkaloid, dicentrine. Biochemical Pharmacology, 79, 1092–1099. doi:10.1016/j.bcp.2009.11.025
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962.10.1021/ci500020 m
  • Li, H., Xiao, H., Lin, L., Jou, D., Kumari, V., Lin, J., & Li, C. (2014). Drug design targeting protein–protein interactions (PPI) using multiple ligand simultaneous docking (MLSD) and drug repositioning: Discovery of raloxifene and bazedoxifene as novel inhibitors of IL-6/GP130 interface. Journal of Medicinal Chemistry, 57, 632–641. doi:10.1021/jm401144z
  • Li, Y., Zhang, X., & Cao, D. (2013). Role of shape complementarity in protein–protein interaction. Scientific Reports, 3, 3271. doi:10.1038/srep03271
  • Mandell, J. G., Roberts, V. A., Pique, M. E., et al. (2001). Protein docking using continuum electrostatics and geometric fit. Protein Engineering, Design and Selection, 14, 105–113.10.1093/protein/14.2.105
  • Manie E., Vincent-Salomon A., & Lehman-Che J. (2009). High frequency of TP53 mutations in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal breast tumours. Cancer Research, 69, 663–671.
  • Maurera, T., Garrentonb, L. S., Oha, A., Pittsc, K., Andersonb, D. J., Skeltond, N. J., … Fang, G. (2012). Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. PNAS, 109, 5229–5304.
  • Modell A. E., Blossr S. L., & Arora P. S. (2016). Systematic targeting of protein–protein interactions. Trends in Pharmacological Sciences, 20, 702–713.
  • Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2007). Hot spots-A review of the protein–protein interface determinant amino-acid residues. Proteins: Structure, Function, and Bioinformatics, 68, 803–812.10.1002/prot.21396
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.10.1002/jcc.v30:16
  • Nagle, D. G., & Zhou, Y.-D. (2006). Natural product-based inhibitors of hypoxia-inducible factor-1 (HIF-1). Current Drug Targets, 7, 355–369.10.2174/138945006776054979
  • Ouchi, T., Monteiro, A. N. A., August, A., Aaronson, S. A., & Hanafusa, H. (1998). BRCA1 regulates p53-dependent gene expression. Proceedings of the National Academy of Sciences, 95, 2302–2306.10.1073/pnas.95.5.2302
  • Pierce, B., & Weng, Z. (2007). ZRANK: Reranking protein docking predictions with an optimized energy function. Proteins: Structure, Function, and Bioinformatics, 67, 1078–1086.10.1002/prot.21373
  • Rasti, M., & Azimi, T. (2015). Tp53 binding to BRCA1 and RAD51 in MCF7 and MDA-MB-468 breast cancer cell lines In vivo and In Vitro. Avicenna Journal of Medical Biotechnology, 7, 76–79.
  • Sable, R., & Jois, S. (2015). Surfing the protein–protein interaction surface using docking methods: Application to the design of PPI inhibitors. Molecules, 20, 11569–11603.10.3390/molecules200611569
  • Schüttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60, 1355–1363.10.1107/S0907444904011679
  • Singh, S., Das, T., Awasthi, M., Pandey, V. P., Pandey, B., & Dwivedi, U. N. (2015). DNA topoisomerase-directed anticancerous alkaloids: ADMET-based screening, molecular docking, and dynamics simulation. Biotechnology & Applied Biochemistry, 63, 125–137. doi:10.1002/bab.1346
  • Singh, S., Awasthi, M., Pandey, V. P., & Dwivedi, U. (2017). Natural products as anticancerous therapeutic molecules with special reference to enzymatic targets topoisomerase, COX, LOX and aromatase. Current Protein & Peptide Science, 18. doi:10.2174/1389203718666170106102223
  • Sun, Q., Burke, J. P., Phan, J., Burns, M. C., Olejniczak, E. T., Waterson, A. G., … Fesik, S. W. (2012). Discovery of small molecules that bind to K-Ras and inhibit sos-mediated activation. Angewandte Chemie International Edition, 51, 6140–6143.10.1002/anie.201201358
  • Valkov, E., Sharpe, T., May, M., Grieve, S., & Hyvonen, M. (2012). Targeting protein–protein interactions and fragment-based drug discovery. Topics in Current Chemistry, 317, 145–180.
  • Walerych, D., Napoli, M., Collavin, L., & Del Sal, G. (2012). The rebel angel: Mutant p53 as the driving oncogene in breast cancer. Carcinogenesis, 33, 2007–2017. doi:10.1093/carcin/bgs232
  • Wells, J. A., & McClendon, C. L. (2007). Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature, 450, 1001–1009.10.1038/nature06526
  • Xu, J., Reumers, J., Couceiro, J. R., De Smet, F., Gallardo, R., Rudyak, S., … Lambrechts, D. (2011). Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chemical Biology, 7, 285–295.10.1038/nchembio.546
  • Zerbe, B., Hall, D. R., Vajda, S., Whitty, A., & Kozakov, D. (2012). Relationship between hot spot residues and ligand binding hot spots in protein–protein interfaces. Journal of Chemical Information & Modelling, 52, 2236–2244. doi:10.1021/ci300175u
  • Zhang, H., Somasundaram, K., Peng, Y., Tian, H., Zhang, H., Bi, D., … El-Deiry, W. S. (1998). BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene, 16, 1713–1721.10.1038/sj.onc.1201932
  • Zinzalla, G., & Thurston, D. E. (2009). Targeting protein–protein interactions for therapeutic intervention: A challenge for the futureprotein–protein. Future Medicinal Chemistry, 1, 65–93.10.4155/fmc.09.12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.