124
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Impact of membrane partitioning on the spatial structure of an S-type cobra cytotoxin

ORCID Icon, , , , , , & show all
Pages 3463-3478 | Received 19 Sep 2017, Accepted 02 Oct 2017, Published online: 06 Nov 2017

References

  • Almeida, P. F., & Pokorny, A. (2009). Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: From kinetics to thermodynamics. Biochemistry, 48(34), 8083–8093.10.1021/bi900914g
  • Altieri, A. S., Hinton, D. P., & Byrd, R. A. (1995). Asssociation of biomolecular systems via pulsed field gradient NMR self-diffusion measurements. Journal of the American Chemical Society, 117, 7566–7567.10.1021/ja00133a039
  • Aripov, T. F., Salakhutdinov, B. A., Tashmukhamedov, B. A., & Sadykov, A. S. (1982). Interaction with liposomes of the spin-labelled cytotoxin from Central Asian cobra venom. Doklady Akademii Nauk SSSR, 262(5), 1275–1277.
  • Auger, M. (1997). Membrane structure and dynamics as viewed by solid-state NMR spectroscopy. Biophysical Chemistry, 68(1–3), 233–241.10.1016/S0301-4622(97)00049-5
  • Batenburg, A. M., Bougis, P. E., Rochat, H., Verkleij, A. J., & De Kruijff, B. (1985). Penetration of a cardiotoxin into cardiolipin model membranes and its implications on lipid organization. Biochemistry, 24(25), 7101–7110.10.1021/bi00346a013
  • Bechinger, B., & Lohner, K. (2006). Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(9), 1529–1539.10.1016/j.bbamem.2006.07.001
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690.10.1063/1.448118
  • Biggin, P. C., & Sansom, M. S. P. (1999). Interactions of alpha-helices with lipid bilayers: A review of simulation studies. Biophysical Chemistry, 76(3), 161–183.10.1016/S0301-4622(98)00233-6
  • Bilwes, A., Rees, B., Moras, D., Menez, R., & Menez, A. (1994). X-ray structure at 1.55 A of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes. Journal of Molecular Biology, 239(1), 122–136.10.1006/jmbi.1994.1357
  • Bougis, P., Rochat, H., Pieroni, G., & Verger, R. (1981). Penetration of phospholipid monolayers by cardiotoxins. Biochemistry, 20(17), 4915–4920.10.1021/bi00520a017
  • Brown, L. R., Braun, W., Kumar, A., & Wuthrich, K. (1982). High resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface. Biophysical Journal, 37(1), 319–328.10.1016/S0006-3495(82)84680-8
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126(1), 014101.10.1063/1.2408420
  • Carbone, M. A., & Macdonald, P. M. (1996). Cardiotoxin II segregates phosphatidylglycerol from mixtures with phosphatidylcholine: (31)P and (2)H NMR spectroscopic evidence. Biochemistry, 35(11), 3368–3378.10.1021/bi952349i
  • Chien, K. Y., Chiang, C. M., Hseu, Y. C., Vyas, A. A., Rule, G. S., & Wu, W. (1994). Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. Journal of Biological Chemistry, 269(20), 14473–14483.
  • Chiou, Y.-L., Wang, J.-J., & Chang, L.-S. (2009). Effect of cholesterol on membrane-damaging activity of Naja nigricollis toxin gamma toward phospholipid vesicles. Toxicon, 54(6), 772–778.10.1016/j.toxicon.2009.06.002
  • Chiou, Y. L., Kao, P. H., Liu, W. H., Lin, S. R., & Chang, L. S. (2010). Roles of lysine residues and N-terminal alpha-amino group in membrane-damaging activity of Taiwan cobra cardiotoxin 3 toward anionic and zwitterionic phospholipid vesicles. Toxicon, 55(2–3), 256–264.10.1016/j.toxicon.2009.07.032
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An W log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092.10.1063/1.464397
  • Dementieva, D. V., Bocharov, E. V., & Arseniev, A. S. (1999). Two forms of cytotoxin II (cardiotoxin) from Naja naja oxiana in aqueous solution: Spatial structures with tightly bound water molecules. European Journal of Biochemistry, 263(1), 152–162.10.1046/j.1432-1327.1999.00478.x
  • Domingues, T. M., Mattei, B., Seelig, J., Perez, K. R., Miranda, A., & Riske, K. A. (2013). Interaction of the antimicrobial peptide gomesin with model membranes: A calorimetric study. Langmuir, 29(27), 8609–8618.10.1021/la401596s
  • Dubinnyi, M. A., Dubovskii, P. V., Utkin, Y. N., Simonova, T. N., Barsukov, L. I., & Arseniev, A. S. (2001). An ESR Study of the Cytotoxin II Interaction with Model Membranes. Russian Journal of Bioorganic Chemistry, 27(2), 84–94.10.1023/A:1011329002584
  • Dubovskii, P. V., & Utkin, Y. N. (2015). Antiproliferative activity of cobra venom cytotoxins. Current Topics in Medicinal Chemistry, 15(7), 638–648.10.2174/1568026615666150217113011
  • Dubovskii, P. V., Li, H., Takahashi, S., Arseniev, A. S., & Akasaka, K. (2000). Structure of an analog of fusion peptide from hemagglutinin. Protein Science, 9(4), 786–798.
  • Dubovskii, P. V., Dementieva, D. V., Bocharov, E. V., Utkin, Y. N., & Arseniev, A. S. (2001). Membrane binding motif of the P-type cardiotoxin. Journal of Molecular Biology, 305(1), 137–149.10.1006/jmbi.2000.4283
  • Dubovskii, P. V., Lesovoy, D. M., Dubinnyi, M. A., Utkin, Y. N., & Arseniev, A. S. (2003). Interaction of the P-type cardiotoxin with phospholipid membranes. European Journal of Biochemistry, 270(9), 2038–2046.10.1046/j.1432-1033.2003.03580.x
  • Dubovskii, P. V., Lesovoy, D. M., Dubinnyi, M. A., Konshina, A. G., Utkin, Y. N., Efremov, R. G., & Arseniev, A. S. (2005). Interaction of three-finger toxins with phospholipid membranes: Comparison of S- and P-type cytotoxins. Biochemical Journal, 387(Pt 3), 807–815.10.1042/BJ20041814
  • Dubovskii, P. V., Vassilevski, A. A., Samsonova, O. V., Egorova, N. S., Kozlov, S. A., Feofanov, A. V., … Grishin, E. V. (2011). Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin. FEBS Journal, 278(22), 4382–4393.10.1111/j.1742-4658.2011.08361.x
  • Dubovskii, P. V., Konshina, A. G., & Efremov, R. G. (2014). Cobra cardiotoxins: Membrane interactions and pharmacological potential. Current Medicinal Chemistry, 21(3), 270–287.
  • Dubovskii, P. V., Dubinnyi, M. A., Konshina, A. G., Kazakova, E. D., Sorokoumova, G. M., Ilyasova, T. M., … Efremov, R. G. (2017). Structural and dynamic ‘portraits’ of recombinant and native cytotoxin i from Naja oxiana: How close are they? Biochemistry, 56(34), 4468–4477.10.1021/acs.biochem.7b00453
  • Efremov, R. G., Volynsky, P. E., Nolde, D. E., Dubovskii, P. V., & Arseniev, A. S. (2002). Interaction of cardiotoxins with membranes: A molecular modeling study. Biophysical Journal, 83(1), 144–153.10.1016/S0006-3495(02)75156-4
  • Feofanov, A. V., Sharonov, G. V., Dubinnyi, M. A., Astapova, M. V., Kudelina, I. A., Dubovskii, P. V., … Arseniev, A. S. (2004). Comparative study of structure and activity of cytotoxins from venom of the cobras Naja oxiana, Naja kaouthia, and Naja haje. Biochemistry (Moscow), 69(10), 1148–1157.10.1023/B:BIRY.0000046890.46901.7e
  • Fillion, M., Goudreault, M., Voyer, N., Bechinger, B., & Auger, M. (2016). Amphiphilicity is a key determinant in the membrane interactions of synthetic 14-mer cationic peptide analogues. Biochemistry, 55(49), 6919–6930.10.1021/acs.biochem.6b00961
  • Forouhar, F., Huang, W.-N., Liu, J.-H., Chien, K.-Y., Wu, W.-G., & Hsiao, C.-D. (2003). Structural basis of membrane-induced cardiotoxin A3 oligomerization. Journal of Biological Chemistry, 278(24), 21980–21988.10.1074/jbc.M208650200
  • Gasanov, S. E., Dagda, R. K., & Rael, E. D. (2014). Snake venom cytotoxins, phospholipase as, and zn-dependent metalloproteinases: Mechanisms of action and pharmacological relevance. Journal of Clinical Toxicology, 4(1), 1000181.
  • Gasanov, S. E., Shrivastava, I. H., Israilov, F. S., Kim, A. A., Rylova, K. A., Zhang, B., & Dagda, R. K. (2015). Naja naja oxiana cobra venom cytotoxins CTI and CTII disrupt mitochondrial membrane integrity: Implications for basic three-fingered cytotoxins. PLoS ONE, 10(6), e0129248.10.1371/journal.pone.0129248
  • Gasanov, S. E., Kim, A. A., & Dagda, R. K. (2016). The Possible role of nonbilayer structures in regulating ATP aynthase activity in mitochondrial membranes. Biofizika, 61(4), 705–710.
  • Gkeka, P., & Sarkisov, L. (2010). Interactions of phospholipid bilayers with several classes of amphiphilic alpha-helical peptides: Insights from coarse-grained molecular dynamics simulations. Journal of Physical Chemistry B, 114(2), 826–839.10.1021/jp908320b
  • Gorai, B., & Sivaraman, T. (2017). Delineating residues for haemolytic activities of snake venom cardiotoxin 1 from Naja naja as probed by molecular dynamics simulations and in vitro validations. International Journal of Biological Macromolecules, 95, 1022–1036.10.1016/j.ijbiomac.2016.10.091
  • Gorai, B., Karthikeyan, M., & Sivaraman, T. (2016). Putative membrane lytic sites of P-type and S-type cardiotoxins from snake venoms as probed by all-atom molecular dynamics simulations. Journal of Molecular Modeling, 22(10), 238.10.1007/s00894-016-3113-y
  • Grishin, E. V., Sukhikh, A. P., Adamovich, T. B., Ovchinnikov, Yu. A. (1974). The isolation and sequence determination of a cytotoxin from the venom of the Middle-Asian cobra Naja naja oxiana. FEBS Letters, 48(2), 179–183.10.1016/0014-5793(74)80462-X
  • Hiller, S., Garces, R. G., Malia, T. J., Orekhov, V. Y., Colombini, M., & Wagner, G. (2008). Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science (New York), 321(5893), 1206–1210.10.1126/science.1161302
  • Huang, W. N., Sue, S. C., Wang, D. S., Wu, P. L., & Wu, W. G. (2003). Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach. Biochemistry, 42(24), 7457–7466.10.1021/bi0344477
  • Huang, S. K., Shin, K., Sarker, M., & Rainey, J. K. (2017). Apela exhibits isoform- and headgroup-dependent modulation of micelle binding, peptide conformation and dynamics. Biochimica et Biophysica Acta, 1859(5), 767–778.10.1016/j.bbamem.2017.01.028
  • Jahnke, W., Mierke, D. F., Beress, L., & Kessler, H. (1994). Structure of cobra cardiotoxin CTX I as derived from nuclear magnetic resonance spectroscopy and distance geometry calculations. Journal of Molecular Biology, 240(5), 445–458.10.1006/jmbi.1994.1460
  • Jambeck, J. P. M., & Lyubartsev, A. P. (2012). An extension and further validation of an all-atomistic force field for biological membranes. Journal of Chemical Theory and Computation, 8(8), 2938–2948.10.1021/ct300342n
  • Kao, P.-H., Lin, S.-R., & Chang, L.-S. (2009). Differential binding to phospholipid bilayers modulates membrane-damaging activity of Naja naja atra cardiotoxins. Toxicon, 54(3), 321–328.10.1016/j.toxicon.2009.04.024
  • Kao, P.-H., Wu, M. J., & Chang, L. S. (2009). Membrane-bound conformation of Naja nigricollis toxin gamma affects its membrane-damaging activity. Toxicon, 53(3), 342–348.10.1016/j.toxicon.2008.12.003
  • Kao, P.-H., Lin, S.-R., Hu, W.-P., & Chang, L.-S. (2012). Naja naja atra and Naja nigricollis cardiotoxins induce fusion of Escherichia coli and Staphylococcus aureus membrane-mimicking liposomes. Toxicon, 60(3), 367–377.10.1016/j.toxicon.2012.04.345
  • Konshina, A. G., Boldyrev, I. A., Utkin, Y. N., Omel’kov, A. V., & Efremov, R. G. (2011). Snake cytotoxins bind to membranes via interactions with phosphatidylserine head groups of lipids. PLoS ONE, 6(4), e19064–e19064.10.1371/journal.pone.0019064
  • Konshina, A. G., Dubovskii, P. V., & Efremov, R. G. (2012). Structure and dynamics of cardiotoxins. Current Protein & Peptide Science, 13(6), 570–584.10.2174/138920312803582960
  • Ladokhin, A. S., & White, S. H. (1999). Folding of amphipathic alpha-helices on membranes: Energetics of helix formation by melittin. Journal of Molecular Biology, 285(4), 1363–1369.10.1006/jmbi.1998.2346
  • Lauterwein, J., Bosch, C., Brown, L. R., & Wuthrich, K. (1979). Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochimica et Biophysica Acta, 556(2), 244–264.10.1016/0005-2736(79)90046-4
  • Lazaridis, T. (2005). Implicit solvent simulations of peptide interactions with anionic lipid membranes. Proteins, 58(3), 518–527.
  • Lee, S.-C., Lin, C.-C., Wang, C.-H., Wu, P.-L., Huang, H.-W., Chang, C.-I., & Wu, W. G. (2014). Endocytotic routes of cobra cardiotoxins depend on spatial distribution of positively charged and hydrophobic domains to target distinct types of sulfated glycoconjugates on cell surface. Journal of Biological Chemistry, 289(29), 20170–20181.10.1074/jbc.M114.557157
  • Levtsova, O. V., Antonov, M. Y., Mordvintsev, D. Y., Utkin, Y. N., Shaitan, K. V., & Kirpichnikov, M. P. (2009). Steered molecular dynamics simulations of cobra cytotoxin interaction with zwitterionic lipid bilayer: No penetration of loop tips into membranes. Computational Biology and Chemistry, 33(1), 29–32.10.1016/j.compbiolchem.2008.07.018
  • Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I., & Lomize, A. L. (2012). OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res, 40 (Database issue), D370–376.
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry, 105(43), 9954–9960.
  • Otting, G., & Wuthrich, K. (1989). Studies of protein hydration in aqueous solution by direct NMR observation of individual protein-bound water molecules. Journal of the American Chemical Society, 111(5), 1871–1875.
  • Otting, G., Steinmetz, W. E., Bougis, P. E., Rochat, H., & Wuthrich, K. (1987). Sequence-specific 1H-NMR assignments and determination of the secondary structure in aqueous solution of the cardiotoxins CTXIIa and CTXIIb from Naja mossambica mossambica. European Journal of Biochemistry, 168(3), 609–620.
  • Phoenix, D. A., Harris, F., Daman, O. A., & Wallace, J. (2002). The prediction of amphiphilic alpha-helices. Current Protein & Peptide Science, 3(2), 201–221.
  • Polyansky, A. A., Ramaswamy, R., Volynsky, P. E., Sbalzarini, I. F., Marrink, S. J., & Efremov, R. G. (2010). Antimicrobial peptides induce growth of phosphatidylglycerol domains in a model bacterial membrane. Journal of Physical Chemistry Letters, 1(20), 3108–3111.
  • Polyansky, A. A., Chugunov, A. O., Vassilevski, A. A., Grishin, E. V., & Efremov, R. G. (2012). Recent advances in computational modeling of alpha-helical membrane-active peptides. Current Protein & Peptide Science, 13(7), 644–657.
  • Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854.
  • Su, Z.-Y., & Wang, Y.-T. (2011). Coarse-Grained Molecular Dynamics simulations of cobra cytotoxin A3 interactions with a lipid bilayer: Penetration of loops into membranes. Journal of Physical Chemistry B, 115(5), 796–802.
  • Sue, S. C., Rajan, P. K., Chen, T. S., Hsieh, C. H., & Wu, W. (1997). Action of Taiwan cobra cardiotoxin on membranes: Binding modes of a beta-sheet polypeptide with phosphatidylcholine bilayers. Biochemistry, 36(32), 9826–9836.
  • Sue, S. C., Jarrell, H. C., Brisson, J. R., & Wu, W. G. (2001). Dynamic characterization of the water binding loop in the P-type cardiotoxin: Implication for the role of the bound water molecule. Biochemistry, 40(43), 12782–12794.
  • Utkin, Y. N., Dubovskii, P. V., Dubinnyi, M. A., Zharavin, V. A., Simonova, T. N., Barsukov, L. I., & Arseniev, A. S. (1999). The Naja oxiana venom cytotoxin II spin-labeled at Lys35 for the EPR study of its interaction with phospholipid membranes. Bioorganicheskaya Khimiya, 25(12), 930–932.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.