273
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Structural distortions due to missense mutations in human formylglycine-generating enzyme leading to multiple sulfatase deficiency

, , , &
Pages 3575-3585 | Received 01 Feb 2017, Accepted 11 Oct 2017, Published online: 03 Nov 2017

References

  • Annunziata, I., Bouchè, V., Lombardi, A., Settembre, C., & Ballabio, A. (2007). Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene. Human Mutation, 28(9), 928. doi:10.1002/humu.9504
  • Bandyopadhyay, S., Chakraborty, S., & Bagchi, B. (2005). Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer. Journal of the American Chemical Society, 127(47), 16660–16667. doi:10.1021/ja054462u
  • Bergner, E. A., & Shapiro, L. J. (1988). Metabolism of 3H-dehydroepiandrosterone sulphate by subjects with steroid sulphatase deficiency. Journal of Inherited Metabolic Disease, 11(4), 403–415.10.1007/BF01800429
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. doi:10.1093/nar/28.1.235
  • Bernstein, S. & Solomon, S. (Eds.). (1970). Chemical and biological aspects of steroid conjugation. Berlin: Springer Berlin Heidelberg. Retrieved from http://link.springer.com/10.1007/978-3-642-95177-0
  • Calabrese, R., Capriotti, E., Fariselli, P., Martelli, P. L., & Casadio, R. (2009). Functional annotations improve the predictive score of human disease-related mutations in proteins. Human Mutation, 30(8), 1237–1244. doi:10.1002/humu.21047
  • Camacho, C. J., & Zhang, C. (2005). FastContact: Rapid estimate of contact and binding free energies. Bioinformatics. (Oxford, England), 21(10), 2534–2536. doi:10.1093/bioinformatics/bti322
  • Capriotti, E., Calabrese, R., Fariselli, P., Martelli, P. L., Altman, R. B., & Casadio, R. (2013). WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics, 14(Suppl 3), S6. doi:10.1186/1471-2164-14-S3-S6
  • Champ, P. C., & Camacho, C. J. (2007). FastContact: A free energy scoring tool for protein–protein complex structures. Nucleic Acids Research, 35(suppl_2), W556–W560. doi:10.1093/nar/gkm326
  • Chandrasekaran, P., & Rajasekaran, R. (2014). Structural characterization of disease-causing mutations on SAP and the functional impact on the SLAM peptide: A molecular dynamics approach. Molecular BioSystems, 10(7), 1869–1880. doi:10.1039/c4mb00177j
  • Chen, J., Liang, Z., Wang, W., Yi, C., Zhang, S., & Zhang, Q. (2014). Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations. Scientific Reports, 4, 6872. doi:10.1038/srep06872
  • Ciemny, M., Kurcinski, M., Kozak, K., Kolinski, A., & Kmiecik, S. (2017). Highly flexible protein–peptide docking using CABS-Dock. In O. Schueler-Furman & N. London (Eds.), Modeling peptide–protein interactions (pp. 69–94). New York, NY: Springer. doi:10.1007/978-1-4939-6798-8_6
  • Ciemny, M. P., Debinski, A., Paczkowska, M., Kolinski, A., Kurcinski, M., & Kmiecik, S. (2016). Protein–peptide molecular docking with large-scale conformational changes: The p53-MDM2 interaction. Scientific Reports, 6, srep37532. doi:10.1038/srep37532
  • Cosma, M. P., Pepe, S., Parenti, G., Settembre, C., Annunziata, I., Wade-Martins, R., … Ballabio, A. (2004). Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency. Human Mutation, 23(6), 576–581. doi:10.1002/humu.20040
  • Comeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004a). ClusPro: A fully automated algorithm for protein-protein docking. Nucleic Acids Research, 32(Web Server), W96–W99. doi:10.1093/nar/gkh354
  • Comeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004b). ClusPro: An automated docking and discrimination method for the prediction of protein complexes. Bioinformatics, 20(1), 45–50. doi:10.1093/bioinformatics/btg371
  • Dierks, T., Dickmanns, A., Preusser-Kunze, A., Schmidt, B., Mariappan, M., von Figura, K., … Rudolph, M. G. (2005). Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Cell, 121(4), 541–552. doi:10.1016/j.cell.2005.03.001
  • Dierks, T., Schmidt, B., & von Figura, K. (1997). Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 94(22), 11963–11968.10.1073/pnas.94.22.11963
  • Ding, F., Borreguero, J. M., Buldyrey, S. V., Stanley, H. E., & Dokholyan, N. V. (2003). Mechanism for the alpha-helix to beta-hairpin transition. Proteins, 53(2), 220–228. doi:10.1002/prot.10468
  • Ding, F., Buldyrev, S. V., & Dokholyan, N. V. (2005). folding trp-cage to nmr resolution native structure using a coarse-grained protein model. Biophysical Journal, 88(1), 147–155. doi:10.1529/biophysj.104.046375
  • Fersht, A. R., Bycroft, M., Horovitz, A., Kellis, J. T., Matouschek, A., & Serrano, L. (1991). Pathway and stability of protein folding. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 332(1263), 171–176. doi:10.1098/rstb.1991.0046
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. doi:10.1002/elps.1150181505
  • Henzler-Wildman, K., & Kern, D. (2007). Dynamic personalities of proteins. Nature, 450(7172), 964–972. doi:10.1038/nature06522
  • Hespenheide, B. M., Rader, A. J., Thorpe, M. F., & Kuhn, L. A. (2002). Identifying protein folding cores from the evolution of flexible regions during unfolding. Journal of Molecular Graphics & Modelling, 21(3), 195–207.10.1016/S1093-3263(02)00146-8
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. doi:10.1002/bip.360221211
  • Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Vajda, S. (2013). How good is automated protein docking? Proteins: Structure Function, and Bioinformatics, 81(12), 2159–2166. doi:10.1002/prot.24403
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., … Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. doi:10.1038/nprot.2016.169
  • Kumar, A., & Purohit, R. (2012). Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E. Mutation Research, 738–739, 28–37. doi:10.1016/j.mrfmmm.2012.08.005
  • Kumari, J. L. J., & Sudandiradoss, C. (2015). Exploring the structural constraints at cleavage site of mucin 1 isoform through molecular dynamics simulation. European Biophysics Journal: EBJ, 44(5), 309–323. doi:10.1007/s00249-015-1023-z
  • Kurcinski, M., Jamroz, M., Blaszczyk, M., Kolinski, A., & Kmiecik, S. (2015). CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Research, 43(W1), W419–W424. doi:10.1093/nar/gkv456
  • Lazaridis, T., & Karplus, M. (1999). Effective energy function for proteins in solution. Proteins, 35(2), 133–152.10.1002/(ISSN)1097-0134
  • Liu, S.-Q., Tan, D.-Y., Zhang, K.-Q., Ji, X.-L., Tao, Y., & Fu, Y.-X. (2012). Protein folding, binding and energy landscape: A synthesis. Retrieved from: INTECH Open Access Publisher . http://cdn.intechopen.com/pdfs/29180/InTech-Protein_folding_binding_and_energy_landscape_a_synthesis.pdf.10.5772/1286
  • Lou, Y.-C., Wang, I., Rajasekaran, M., Kao, Y.-F., Ho, M.-R., Hsu, S.-T. D., … Chen, C. (2014). Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Nucleic Acids Research, 42(6), 4080–4093. doi:10.1093/nar/gkt1345
  • Luo, S.-C., Lou, Y.-C., Rajasekaran, M., Chang, Y.-W., Hsiao, C.-D., & Chen, C. (2013). Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae. The Journal of Biological Chemistry, 288(35), 25551–25561. doi:10.1074/jbc.M113.481978
  • Meshach Paul, D., & Rajasekaran, R. (2016). Exploration of structural and functional variations owing to point mutations in α-NAGA. Interdisciplinary Sciences, Computational Life Sciences, 1–12. doi:10.1007/s12539-016-0173-8
  • Meshach Paul, D., & Rajasekaran, R. (2017). In silico approach to explore the disruption in the molecular mechanism of human hyaluronidase 1 by mutant E268K that directs Natowicz syndrome. European Biophysics Journal: EBJ, 46(2), 157–169. doi:10.1007/s00249-016-1151-0
  • Miech, C., Dierks, T., Selmer, T., von Figura, K., & Schmidt, B. (1998). Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. The Journal of Biological Chemistry, 273(9), 4835–4837.10.1074/jbc.273.9.4835
  • Pace, C. N., Shirley, B. A., McNutt, M., & Gajiwala, K. (1996). Forces contributing to the conformational stability of proteins. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 10(1), 75–83.
  • Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & De Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics & Modelling, 27(8), 889–899. doi:10.1016/j.jmgm.2009.01.006
  • Porollo, A., & Meller, J. (2010). POLYVIEW-MM: Web-based platform for animation and analysis of molecular simulations. Nucleic Acids Research, 38(Web Server issue), W662–W666. doi:10.1093/nar/gkq445
  • Preusser-Kunze, A., Mariappan, M., Schmidt, B., Gande, S. L., Mutenda, K., Wenzel, D., … Dierks, T. (2005). Molecular characterization of the human C-formylglycine-generating enzyme. Journal of Biological Chemistry, 280(15), 14900–14910. doi:10.1074/jbc.M413383200
  • Read, R. J., Adams, P. D., Arendall, W. B., Brunger, A. T., Emsley, P., Joosten, R. P., … Zwart, P. H. (2011). A new generation of crystallographic validation tools for the protein data bank. Structure, 19(10), 1395–1412. doi:10.1016/j.str.2011.08.006
  • Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J. G., Dierks, T., … Rudolph, M. G. (2006). A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proceedings of the National Academy of Sciences of the United States of America, 103(1), 81–86.10.1073/pnas.0507592102
  • Russell, R. B., & Barton, G. J. (1994). Structural features can be unconserved in proteins with similar folds. An analysis of side-chain to side-chain contacts secondary structure and accessibility. Journal of Molecular Biology, 244(3), 332–350. doi:10.1006/jmbi.1994.1733
  • Schlotawa, L., Radhakrishnan, K., Baumgartner, M., Schmid, R., Schmidt, B., Dierks, T., & Gärtner, J. (2013). Rapid degradation of an active formylglycine generating enzyme variant leads to a late infantile severe form of multiple sulfatase deficiency. European Journal of Human Genetics, 21(9), 1020–1023. doi:10.1038/ejhg.2012.291
  • Schmidt, B., Selmer, T., Ingendoh, A., & von Figura, K. (1995). A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell, 82(2), 271–278.10.1016/0092-8674(95)90314-3
  • Scriver, C. R. (2001). The metabolic & molecular bases of inherited disease. Michigan, MI: McGraw-Hill.
  • Senthil Kumar, B., Paul, M., Ekambaram, K., & Ramalingam, R. (2017). Structural stability among hybrid antimicrobial peptide cecropin A(1–8)–magainin 2(1–12) and its analogues: A computational approach. Journal of Cluster Science, 1–15.
  • Shirvanyants, D., Ding, F., Tsao, D., Ramachandran, S., & Dokholyan, N. V. (2012). DMD: An efficient and versatile simulation method for fine protein characterization. The Journal of Physical Chemistry B, 116(29), 8375–8382. doi:10.1021/jp2114576
  • Sinha, P. K. (2015). The magnificent world of sulfatase and sulfatase maturating enzymes. Biochemistry & Physiology, 4, e134. doi:10.4172/2168-9652.1000e134
  • Srinivasan, E., & Rajasekaran, R. (2016a). Computational investigation of curcumin, a natural polyphenol that inhibits the destabilization and the aggregation of human SOD1 mutant (Ala4Val). RSC Advances, 6(104), 102744–102753. doi:10.1039/C6RA21927F
  • Srinivasan, E., & Rajasekaran, R. (2016b). Computational simulation analysis on human SOD1 mutant (H80R) exposes the structural destabilization and the deviation of Zn binding that directs familial amyotrophic lateral sclerosis. Journal of Biomolecular Structure and Dynamics, 1–9. doi:10.1080/07391102.2016.1227723
  • Srinivasan, E., & Rajasekaran, R. (2017). Exploring the cause of aggregation and reduced Zn binding affinity by G85R mutation in SOD1 rendering amyotrophic lateral sclerosis. Proteins: Structure, Function, and Bioinformatics, 85(7), 1276–1286. doi:10.1002/prot.25288
  • Stock, G., Jain, A., Riccardi, L., & Nguyen, P. H. (2012). Exploring the energy landscape of small peptides and proteins by molecular dynamics simulations. In R. Schweitzer-Stenner (Ed.), Protein and peptide folding, misfolding, and non-folding (pp. 55–77). Hoboken, NJ: Wiley. doi:10.1002/9781118183373.ch2
  • Tina, K. G., Bhadra, R., & Srinivasan, N. (2007). PIC: Protein interactions calculator. Nucleic Acids Research, 35(suppl 2), W473–W476. doi:10.1093/nar/gkm423
  • Vendome, J., Posy, S., Jin, X., Bahna, F., Ahlsen, G., Shapiro, L., & Honig, B. (2011). Molecular design principles underlying β-strand swapping in the adhesive dimerization of cadherins. Nature Structural & Molecular Biology, 18(6), 693–700. doi:10.1038/nsmb.2051
  • Vogt, G., Woell, S., & Argos, P. (1997). Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 269(4), 631–643. doi:10.1006/jmbi.1997.1042
  • Xia, K., & Wei, G.-W. (2014). Persistent homology analysis of protein structure, flexibility and folding. International Journal for Numerical Methods in Biomedical Engineering, 30(8), 814–844. doi:10.1002/cnm.2655
  • Yang, L.-Q., Sang, P., Tao, Y., Fu, Y.-X., Zhang, K.-Q., Xie, Y.-H., & Liu, S.-Q. (2014). Protein dynamics and motions in relation to their functions: Several case studies and the underlying mechanisms. Journal of Biomolecular Structure & Dynamics, 32(3), 372–393. doi:10.1080/07391102.2013.770372
  • Zavodszky, M. I., Lei, M., Thorpe, M. F., Day, A. R., & Kuhn, L. A. (2004). Modeling correlated main-chain motions in proteins for flexible molecular recognition. Proteins: Structure, Function, and Bioinformatics, 57(2), 243–261.10.1002/prot.20179

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.