175
Views
4
CrossRef citations to date
0
Altmetric
Research Article

The influence of 5-fluorouracil anticancer drug on the DNA base pairs; a quantum chemical study

, &
Pages 1-19 | Received 31 Aug 2017, Accepted 05 Dec 2017, Published online: 22 Jan 2018

References

  • Avendano, C. & Menendes, J. C. (2015). Medicinal chemistry of anticancer drugs. Amsterdam: Elsevier.
  • Bader, R. F. W. (1990). Atoms in molecules: A quantum theory. New York, NY: Oxford University Press.
  • Biegler-König, F., Schönbohm, J., & Bayles, D. (2001). AIM2000 – A program to analyze and 23 visualize atoms in molecules. Journal of Computational Chemistry, 22, 545–559. doi:10.1002/1096987X(20010415)22:5<545:AID-JCC1027>3.0.CO;2-Y
  • Braga, S. F., de Melo, L. C., & Barone, P. M. V. B. (2004). Semiempirical study on the electronic structure of antitumor drugs ellipticines, olivacines and isoellipticines. Journal of Molecular Structure: Theochem, 710(1–3), 51–59. doi:10.1016/j.theochem.2004.07.039
  • Burda, J. V., Sponer, J., Leszczynski, J., & Hobza, P. (1997). Interaction of DNA base pairs with various metal cations (Mg2+, Ca2+, Sr2+, Ba2+, Cu+, Ag+, Au+, Zn2+, Cd2+, and Hg2+): Nonempirical ab initio calculations on structures, energies, and nonadditivity of the interaction. American Chemistry Society, 101(46), 9670–9677. doi:10.1021/jp963753+
  • Cuma, M., Thompson, C., & Scheiner, S. (1998). Effect of nonproximate atomic substitution on excited state intramolecular proton transfer. Journal of Computational Chemistry, 19, 129–138. doi:10.1002/(SICI)1096-987X(19980130)19:2<129::AID-JCC5>3.0.CO;2-W
  • Deepa, P., Kolandaivel, P., & Senthilkumar, K. (2008). Interactions of anticancer drugs with usual and mismatch base pairs – Density functional theory studies. Biophysical Chemistry, 136(1), 50–58. doi:10.1016/j.bpc.2008.04.007
  • Espinosa, E. & Molins, E. (2000). Retrieving interaction potentials from the topology of the electron density distribution: The case of hydrogen bonds. The Journal of Chemical Physics, 113, 5686–5694. doi:10.1063/1.1290612
  • Fortino, M., Marino, T., & Russo, N. (2014). theoretical study of silver-ion-mediated base pairs: The Case of C-Ag–C and C–Ag–A systems. Journal of Physical Chemistry A, 119(21), 5153–5157. doi:10.1021/jp5096739
  • Franklin, R. E. & Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate. Nature, 171(4356), 740–741. doi:10.1038/171740a0
  • Frisch, M. J., Trucks, G. W., & Schlegel, H. B. (2003). Gaussian 03, Revision B.01. Pittsburgh, PA: Gaussian.
  • Glendening, E. D., Reed, A. E., Carpenter, J. E., & Weinhold, F. (1998). NBO, Version 3.1
  • Grabowski, S. J. (1999). Study of correlations for dihydrogen bonds by quantum-chemical calculations. Chemical Physics Letters, 312(5-6), 542–554. doi:10.1016/S0009-2614(99)00928-8
  • Hameka, H. F. (1958). On the nuclear magnetic shielding in the hydrogen molecule. Molecular Physics, 1, 203–215. doi:10.1080/00268975800100261
  • Hazrati, M. K. & Hadipour, N. L. (2016). Adsorption behavior of 5-fluorouracil on pristine, B-, Si-, and Al-doped C60 fullerenes: A first-principles study. Physics Letters A, 380(7-8), 937–941. doi:10.1016/j.physleta.2016.01.020
  • Hecht, S. M. (2000). Bleomycin: New perspectives on the mechanism of action 1. Journal of Natural Products, 63(1), 158–168. doi:10.1021/np990549f
  • Heidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., & Griesbach, L. (1957). Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature, 179, 663–666. doi:10.1038/179663a0
  • Hokmabady, L., Raissi, H., & Khanmohammadi, A. (2016). Interactions of the 5-fluorouracil anticancer drug with DNA pyrimidine bases: a detailed computational approach. Structural Chemistry, 27(2), 487–504. doi:10.1007/s11224-015-0578-8
  • Iogansen, A. V. (1999). Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 1585–1612. doi:10.1016/S1386-1425(98)00348-5
  • Jesus, A. J. L. & Redinha, J. S. (2011). Charge-assisted intramolecular hydrogen bonds in disubstituted cyclohexane derivatives. The Journal of Physical Chemistry A, 115, 14069–14077. doi:10.1021/jp206193a
  • Johnston, P. G., Lenz, H. G., Leichman, C. G., Danenberg, K. D., Allegra, C. J., Danenberg, P. V., & Leichman, L. (1995). Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Research, 55(7), 1407–1412
  • Koch, U. & Popelier, P. L. A. (1995). Characterization of C–H–O hydrogen bonds on the basis of the charge density. The Journal of Physical Chemistry, 99, 9747–9754. doi:10.1021/j100024a016
  • Krygowski, T. M. & Cyrański, M. K. (1996). Separation of the energetic and geometric contributions to the aromaticity of π-electron carbocyclics. Tetrahedron, 52(5), 1713–1722. doi:10.1016/0040-4020(95)010076
  • Krygowski, T. M. & Cyrański, M. K. (2001). Structural aspects of aromaticity. Chemical Reviews, 101, 1385–1420. doi:10.1021/cr990326u
  • Krygowski, T. M. & Stȩpień, B. T. (2005). Sigma- and pi-electron delocalization: Focus on substituent effects. Chemical Reviews, 105, 3482–3512. doi:10.1021/cr030081s
  • Kubica, D., Molchanov, S., & Gryff-Keller, A. (2017). Solvation of uracil and its derivatives by DMSO: A DFT-supported 1 H NMR and 13 C NMR study. The Journal of Physical Chemistry A, 121(8), 1841–1848. doi:10.1021/acs.jpca.7b00144
  • Li, V. S., Choi, D., Wang, Z., Jimenez, L. S., Tang, M. S., & Kohn, H. (1996). Role of the C-10 substituent in mitomycin C-1−DNA bonding. Journal of the American Chemical Society, 118(10), 2326–2331. doi:10.1021/ja953871v
  • Li, N., Ma, Y., Yang, C., Guo, L., & Yang, X. (2005). Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods. Biophysical Chemistry, 116(3), 199–205. doi:10.1016/j.bpc.2005.04.009
  • Lu, T. & Chen, F. (2012). Journal of Computational Chemistry, 33(5), 580–592. doi:10.1002/jcc.22885
  • Matito, E., Duran, M., & Solà, M. (2005). The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. The Journal of Chemical Physics, 122, 014109–141098. doi:10.1063/1.1824895
  • Mirzaei, M. (2013). Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. International Journal of Nano Dimension, 3(3), 175–179. doi:10.7508/IJND.2012.03.001
  • Mohamed, H. S., Dahy, A. R. A., Hassan, G. S., Eid, S. S. M., & Mahfouz, R. M. (2017). Quantum-chemical investigation on 5-fluorouracil anticancer drug. Structural Chemistry, 28(4), 1093–1109. doi:10.1007/s11224-017-0913-3
  • Poater, J., Duran, M., Solà, M., & Silvi, B. (2005). Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chemical Reviews, 105, 3911. doi:10.1021/cr030085x
  • Politzer, P. & Murray, J. (2002). The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 108(3), 134–142. doi:10.1007/s00214-002-0363-9
  • Radhika, R., Shankar, R., Vijayakumar, S., & Kolandaivel, P. (2017). Role of 6-Mercaptopurine in the potential therapeutic targets DNA base pairs and G-quadruplex DNA: insights from quantum chemical and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 35, 1–33. doi:10.1080/07391102.2017.1323013
  • Rauf, S., Gooding, J. J., Akhtar, K., Ghauri, M. A., Rahman, M., Anwar, M. A., & Khalid, A. M. (2005). Electrochemical approach of anticancer drugs–DNA interaction. Journal of Pharmaceutical and Biomedical Analysis, 37(2), 205–217. doi:10.1016/j.jpba.2004.10.037
  • Reed, A. E., Curtis, L. A., & Weinhold, F. A. (1998). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88, 899–926. doi:10.1021/cr00088a005
  • Reni, M., Cereda, S., & Galli, L. (2007). PEFG (cisplatin, epirubicin, 5-fluorouracil, gemcitabine) for patients with advanced pancreatic cancer: The ghost regimen. Cancer Letters, 256(1), 25–28. doi:10.1016/j.canlet.2007.04.009
  • Schleyer, P. R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N. J. R. (1996). Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. Journal of the American Chemical Society, 118(26), 63176318. doi:10.1021/ja960582d
  • Scrocco, E. & Tomasi, J. (1979). Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials. Advances in Quantum Chemistry, 11, 115–193. doi:10.1016/S0065-3276(08)60236-1
  • Shainyan, B. A., Chipanina, N. N., Aksamentova, T. N., Oznobikhina, L. P., Rosentsevig, G. N., & Rosentsevig, I. B. (2010). Intramolecular hydrogen bonds in the sulfonamide derivatives of oxamide, dithiooxamide, and biuret. FT-IR and DFT study, AIM and NBO analysis. Tetrahedron, 66, 8551–8556. doi:10.1016/j.tet.2010.08.076
  • Shankar, R., Kolandaivel, P., & Senthil kumar, L. (2012). Coordination and binding properties of zwitterionic glutathione with transition metal cations. Inorganica Chimica Acta, 387, 125–136. doi:10.1016/j.ica.2012.01.004
  • Shankar, R., Radhika, R., Thangamani, D., Senthil Kumar, L., & Kolandaivel, P. (2017). Theoretical studies on interaction of anticancer drugs (dacarbazine, procarbazine and triethylenemelamine) with normal (AT and GC) and mismatch (GG, CC, AA and TT) base pairs. Molecular Simulation, 41(8), 633–652. doi:10.1080/08927022.2014.913098
  • Soltani, A., Baei, M. T., Tazikeh Lemeski, E., Kaveh, Sara, & Balakheyli, H. (2015). A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes. Journal of Physics and Chemistry of Solids, 86, 57–64. doi:10.1016/j.jpcs.2015.06.008
  • Stringer, J. L. (2011). Basic concepts in pharmacology: What you need to know for each drug class (4th ed.). New York, NY: McGraw-Hill
  • Tomasz, M., Lipman, R., Chowdary, D., Pawlak, J., Verdine, G. L., & Nakanishi, K. (1987). Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA. Science, 235(4793), 1204–1208. doi:10.1126/science.3103215
  • Wang, W., Collie-Duguid, E., & Cassidy, J. (2002). Cerivastatin enhances the cytotoxicity of 5-fluorouracil on chemosensitive and resistant colorectal cancer cell lines. FEBS Letters, 531(3), 415–420. doi:10.1016/S0014-5793(02)03575-5
  • Wang, S., Zhao, P., Zhang, C., & Bu, Y. (2016). Mechanisms responsible for high energy radiation induced damage to single-stranded DNA modified by radiosensitizing 5-halogenated deoxyuridines. The Journal of Physical Chemistry B, 120(10), 2649–2657. doi:10.1021/acs.jpcb.5b11432
  • Watson, J. D. & Crick, F. H. C. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171, 737–738.10.1038/171737a0
  • Wilkins, M. H. F., Stokes, A. R., & Wilson, H. R. (1953). Molecular structure of nucleic acids: Molecular structure of deoxypentose nucleic acids. Nature, 171, 738–740.10.1038/171738a0
  • Zhurkin, V. B., Tolstorukov, M. Y., Xu, F., Colasanti, A. V., & Olson, W. K. (2005). Sequence-dependent variability of B-DNA. Structure Chemistry, 16, 18–34. doi:10.1007/0-387-29148-2_2
  • Zuber, G., Quada, J. C., & Hecht, S. M. (1998). Sequence selective cleavage of a dna octanucleotide by chlorinated bithiazoles and bleomycins. Journal of the American Chemical Society, 120(36), 9368–9369. doi:10.1021/ja981937r

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.