336
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Exploring the nature of the H-bonds between the human class II MHC protein, HLA-DR1 (DRB*0101) and the influenza virus hemagglutinin peptide, HA306-318, using the quantum theory of atoms in molecules

, &
Pages 48-64 | Received 01 Nov 2017, Accepted 08 Dec 2017, Published online: 02 Jan 2018

References

  • Alba, M. P., Almonacid, H., Calderón, A., Chacón, E. A., Poloche, L. A., Patarroyo, M. A., & Patarroyo, M. E. (2011). 3D structure and immunogenicity of Plasmodium falciparum sporozoite induced associated protein peptides as components of fully-protective anti-malarial vaccine Biochem. Biochemical and Biophysical Research Communications, 416, 349–355. doi:10.1016/j.bbrc.2011.11.039
  • Aray, Y., Rodriguez, J., & Vega, D. (2000). Topology of the electron density and cohesive energy of the face-centered cubic transition metals. The Journal of Physical Chemistry B, 104, 4608–4612. doi:10.1021/jp993976a
  • Aray, Y., Rodriguez, J., & Vega, D. (2007). Atoms in molecules theory for exploring the nature of the active sites on surfaces. In C. F. Matta & R. J. Boyd (Eds.), The quantum theory of atoms in molecules: From DNA to solid and drug design (pp. 231–256). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. doi: 10.1002/9783527610709.ch9
  • Bader, R. F. W. (1990). Atoms in molecules: A quantum theory. Oxford: Clarendon Press.
  • Bader, R. F. W., & Essen, H. (1984). The characterization of atomic interactions. The Journal of Chemical Physics, 80, 1943–1960. doi:10.1063/1.446956
  • Bankiewicz, B., Matczak, P., & Palusiak, M. (2012). Electron density characteristic in bond critical point (QTAIM) versus interaction energy components (SAPT): The case of charge-assisted hydrogen bonding. The Journal of Physical Chemistry A, 116, 452–459. doi:10.1021/jp210940b
  • Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L., & Wiley, D. C. (1987). Structure of the human class I histocompatibility antigen, HLA-A2. Nature, 329, 506–512. doi:10.1038/329506a0
  • Blaszczyk, M., Kurcinski, M., Kouza, M., Wieteska, L., Debinski, A., Kolinski, A., & Kmiecik, S. (2016). Modeling of protein–peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods, 93, 72–83. doi:10.1016/j.ymeth.2015.07.004
  • Bordner, A. J., & Mittelmann, H. D. (2010). MultiRTA: A simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes. BMC Bioinformatics, 11, 482–494. doi:10.1186/1471-2105-11-482
  • Brovarets, O. O., Yurenko, Y. P., & Hovorum, D. M. (2014). Intermolecular CH O/N H-bonds in the biologically importants pairs of natural nucleobases: A thorough quantum-chemical study. Journal of Biomolecular Structure and Dynamics, 32, 993–1022. doi:10.1080/07391102.2013.799439
  • Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., & Wiley, D. C. (1993). Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature, 364, 33–39. doi:10.1038/364033a0
  • Buchli, R., VanGundy, R. S., Hickman-Miller, H. D., Giberson, C. H. F., Bardet, W., & Hildebrandt, W. H. (2005). Development and validation of a fluorescence polarization-based competitive peptide-binding assay for HLA-A*0201 – A new tool for epitope discovery. Biochemistry, 44(37), 12491–12507. doi:10.1021/bi050255v
  • Cardenas, C., Villaveces, J. L., Bohorquez, H., Llanos, E., Suarez, C., Obregon, M., & Patarroyo, M. E. (2004). Quantum chemical analysis explains hemagglutinin peptide-MHC class II molecule HLA-DRbeta1*0101 interactions. Biochemical and Biophysical Research Communications, 323(4), 1265–1277. doi:10.1016/j.bbrc.2004.08.225
  • Castellino, F., Zhong, G., & Germain, R. N. (1997). Antigen presentation by MHC class II molecules: Invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture. Human Immunology, 54, 159–169.10.1016/S0198-8859(97)00078-5
  • Dassault Systèmes BIOVIA. (2016). Discovery studio modeling environment, release 2016. San Diego, CA: Dassault Systèmes.
  • Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 113, 7756–7764. doi:10.1063/1.1316015
  • Diller, D. J., Swanson, J., Bayden, A. S., Jarosinski, M., & Audie, J. (2015). Rational, computer-enabled peptide drug design: Principles, methods, applications and future directions. Future Medicinal Chemistry, 7, 2173–2193. doi:10.4155/fmc.15.142
  • Farrugia, L. J., Kocovsky, P., Senn, H. M., & Vyskocil, S. (2009). Weak intra- and intermolecular interactions in a binaphthol imine: An experimental charge-density study on (±)-8’-benzhydrylideneamino-1,1’-binaphthyl-2-ol. Acta Crystallographica Section B Structural Science, B65, 757–759. doi:10.1107/S010876810903273X
  • Ferrante, A., Templeton, M., Hoffman, M., & Castellini, M. J. (2015). The thermodynamic mechanism of peptide–MHC class II complex formation is a determinant of susceptibility to HLA-DM. The Journal of Immunology, 195, 1251–1261. doi:10.4049/jimmunol.1402367
  • Fisette, O., Wingbermuhle, S., Tampe, R., & Schafer, L. V. (2016). Molecular mechanism of peptide editing in the tapasin–MHC I complex. Scientific Reports, 6, 19085. doi:10.1038/srep19085
  • Fujii, A., Hayashi, H., Park, J. W., Kazama, T., Mikami, N., & Tsuzuki, S. (2011). Experimental and theoretical determination of the accurate CH/π interaction energies in benzene–alkane clusters: Correlation between interaction energy and polarizability. Physical Chemistry Chemical Physics, 13, 14131–14141. doi:10.1039/c1cp20203 k
  • Fukunishi, Y., Yamasaki, S., Yasumatsu, I., Takeuchi, K., & Nakamura, H. (2017). Quantitative structure-activity relationship (QSAR) models for docking score correction. Molecular Informatics, 36, doi:10.1002/minf.201600013
  • Geluk, A., Meijgaarden, K. E., & Ottenhoff, T. H. M. (1997). Flexibility in T-cell receptor ligand repertoires depends on MHC and T-cell receptor clonotype. Immunology, 90(3), 370–375.10.1111/imm.1997.90.issue-3
  • Gonzalez, C., & Lim, E. C. (2000). A quantum chemistry study of the van der waals dimers of benzene, naphthalene, and anthracene: Crossed (D2d) and parallel-displaced (C2 h) dimers of very similar energies in the linear polyacenes. The Journal of Physical Chemistry A, 104, 2953–2957. doi:10.1021/jp993642l
  • Gonzalez, C., Allison, T. C., & Lim, E. C. (2001). Hartree−Fock dispersion probe of the equilibrium structures of small microclusters of benzene and naphthalene: comparison with second-order MØeller−Plesset geometries. The Journal of Physical Chemistry A, 105(46), 10583–10587. doi:10.1021/jp012341 k
  • Gonzalez, R., Suarez, C. F., Bohorquez, H. J., Patarroyo, M. A., & Patarroyo, M. E. (2017). Semi-empirical quantum evaluation of peptide – MHC Class II binding. Chemical Physics Letters, 29–34. doi:10.1016/j.cplett.2016.12.015
  • Hill, C. M., Liu, A., Marshall, K. W., Mayer, J., Jorgensen, B., Yuan, B., … Rothbard, J. B. (1994). Exploration of requirements for peptide binding to HLA DRB1*0101 and DRB1*0401. The Journal of Immunology, 152, 2890–2898.
  • Jardetzky, T. S., Brown, J. H., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., & Wiley, D. C. (1996). Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proceedings of the National Academy of Sciences, 93, 734–738.10.1073/pnas.93.2.734
  • Kato, Z., Stern, J. N., Nakamura, H. K., Kuwata, K., Kondo, N., & Strominger, J. L. (2008). Positioning of autoimmune TCR-Ob.2F3 and TCR-Ob.3D1 on the MBP85-99/HLA-DR2 complex. Proceedings of the National Academy of Sciences, 105(40), 15523–15528. doi:10.1073/pnas.0807338105
  • Khan, J. M., & Ranganathan, S. (2010). pDOCK: A new technique for rapid and accurate docking of peptide ligands to major histocompatibility complexes. Immunome Research, 6(Suppl 1), S2. doi:10.1186/1745-7580-6-S1-S2
  • Knop, O., Boyd, R. J., & Choi, S. C. (1988). Sulfur-sulfur bond lengths, or can a bond length be estimated from a single parameter? Journal of the American Chemical Society, 110, 7299–7301. doi:10.1021/ja00230a005
  • Lanzarotti, E., Biekofsky, R. R., Estrin, D. A., Marti, M. A., & Turjanski, A. G. (2011). Aromatic–aromatic interactions in proteins: Beyond the dimer. Journal of Chemical Information and Modeling, 51(7), 1623–1633. doi:10.1021/ci200062e
  • Li, Z., Zhao, Y., Pan, G., Tang, J., & Guo, F. (2016). A novel peptide binding prediction approach for HLA-DR molecule based on sequence and structural information. BioMed Research International, Article ID 3832176. doi:10.1155/2016/3832176
  • Munshi, P., & Guru Row, T. N. (2005). Exploring the lower limit in hydrogen bonds: Analysis of weak C−H···O and C−H···π interactions in substituted coumarins from charge density analysis. The Journal of Physical Chemistry A, 109, 659–672. doi:10.1021/jp046388s
  • Murthy, V. L., & Stern, L. J. (1997). The class II MHC protein HLA-DR1 in complex with an endogenous peptide: Implications for the structural basis of the specificity of peptide binding. Structure, 5(10), 1385–1396.10.1016/S0969-2126(97)00288-8
  • Nikolaienko, T. Y., Bulavin, L. A., & Hovorun, D. M. (2012). Bridging QTAIM with vibrational spectroscopy: The energy of intramolecular hydrogen bonds in DNA-related biomolecules. Physical Chemistry Chemical Physics, 14(20), 7441–7447. doi:10.1039/c2cp40176b
  • Parry, Ch S, Gorski, J., & Stern, L. J. (2007). Crystallographic structure of the human leukocyte antigen DRA, DRB3*0101: Models of a directional alloimmune response and autoimmunity. Journal of Molecular Biology, 371, 435–446. doi:10.1016/j.jmb.2007.05.025
  • Parthasarathi, R., & Subramanian, V. (2006). Characterization of hydrogen bonding: From van der Waals interactions to covalency. In S. Grabowski (Ed.), Hydrogen bonding – New insights (pp. 1–51). Dordrecht: Springer. doi:10.1007/978-1-4020-4853-1_1
  • Patarroyo, M. E., & Patarroyo, A. (2008). Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Accounts of Chemical Research, 41(3), 377–386. doi:10.1021/ar700120t
  • Patronov, A., Dimitrov, I., Flower, D. R., & Doytchinova, I. (2012). Peptide binding prediction for the human class II MHC allele HLA-DP2: A molecular docking approach. BMC Structural Biology, 11, 32–42. doi:10.1186/1472-6807-11-32
  • Perdew, J. P., Burke, K., & Emzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868. doi:10.1103/PhysRevLett.77.3865
  • Popelier, P. L. A. (2000). Atoms in molecules – An introduction. Harlow: Pearson Education.
  • Pos, W., Sethi, D. K., Call, M. J., Schulze, M. N., Anders, A.-K., Pyrdol, J., & Wucherpfenning, K. W. (2012). Crystal structure of the HLA-DM–HLA-DR1 complex defines mechanisms for rapid peptide selection. Cell, 151, 1557–1568. doi:10.1016/j.cell.2012.11.025
  • Reyes, C., Moreno-Vranich, A., & Patarroyo, M. E. (2017). The role of pi-interactions and hydrogen bonds in fully protective synthetic malaria vaccine development. Biochemical and Biophysical Research Communications, 484(3), 501–507. doi:10.1016/j.bbrc.2017.01.077
  • Rotzschke, O., Lau, J. M., Hofstatter, M., Falk, K., & Strominger, J. L. (2002). A pH-sensitive histidine residue as control element for ligand release from HLA-DR molecules. Proceedings of the National Academy of Sciences, 99, 16946–16950. doi:10.1073/pnas.212643999
  • Sheu, S. Y., Yang, D. Y., Selzle, H. L., & Schlag, E. W. (2003). Energetics of hydrogen bonds in peptides. Proceedings of the National Academy of Sciences, 100(22), 12683–12684. doi:10.1073/pnas.2133366100
  • Shi, Z., Olson, C. A., Bell, A. J., & Kallenbach, N. R. (2001). Stabilization of α-helix structure by polar side-chain interactions: Complex salt bridges, cation-π interactions, and C-H···O H-bonds. Biopolymers, 60(5), 366–380. doi:10.1002/1097-0282(2001)60:5<366::AID-BIP10177>3.0.CO;2-5
  • Spiwok, V. (2017). CH/π interactions in carbohydrate recognition. Molecules, 22(7), 1038–1049. doi:10.3390/molecules22071038
  • Stern, L. J., Brown, J. H., Jardetzky, T. S., Gorga, J. C., Urban, R. G., Strominger, J. L., & Wiley, D. C. (1994). Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature, 368, 215–221. doi:10.1038/368215a0
  • Terasaki, P. I. (2007). A brief history of HLA. Immunologic Research, 38, 139–148. doi:10.1007/s12026-007-0020-4
  • Vega, D., & Almeida, D. (2014). AIM-UC: An application for QTAIM analysis. Journal of Computational Methods in Sciences and Engineering, 14(1–3), 131–136. doi:10.3233/JCM-140491
  • Wadood, A., Riaz, M., Jamal, S. B., Shah, M., & Lodhi, M. A. (2013). Molecular docking study of P4-Benzoxaborolesubstituted ligands as inhibitors of HCV NS3/4A protease. Bioinformation, 9, 309–314. doi:10.6026/97320630009309
  • Yamada, H., Mochizuki, Y., Fukuzawa, K., Okiyama, Y., & Komeiji, Y. (2016). Fragment molecular orbital (FMO) calculations on DNA by a scaled third-order Møller-Plesset perturbation (MP2.5) scheme. Computational and Theoretical Chemistry, 1101, 46–54. doi:10.1016/j.comptc.2016.12.008
  • Yoshioka, A., Fukuzawa, K., Mochizuki, Y., Yamashita, K., Nakano, T., Okiyama, Y., … Tanaka, Sh (2011). Prediction of probable mutations in influenza virus hemagglutinin protein based on large-scale ab initio fragment molecular orbital calculations. Journal of Molecular Graphics and Modelling, 30, 110–119. doi:10.1016/j.jmgm.2011.06.011
  • Yoshioka, A., Takematsu, K., Kurisaki, I., Fukuzawa, K., Mochizuk, Y., Nakano, T., … Tanaka, Sh (2011). Antigen–antibody interactions of influenza virus hemagglutinin revealed by the fragment molecular orbital calculation. Theoretical Chemistry Accounts, 130, 1197–1202. doi:10.1007/s00214-011-1048-z
  • Zavala-Ruiz, Z., Sundberg, E. J., Stone, J. D., DeOliveira, D. B., Chan, I. C., Svendsen, J., … Stern, L. J. (2003). Exploration of the P6/P7 region of the peptide-binding site of the human class II major histocompatability complex protein HLA-DR1. Journal of Biological Chemistry, 278, 44904–44912. doi:10.1074/jbc.M307652200
  • Zhang, L., Chen, Y., Wong, H.-S., Zhou, S., Mamitsuka, H., & Zhu, S. (2012). TEPITOPEpan: Extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One, 7(2), e30483. doi:10.1371/journal.pone.0030483

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.