226
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of iron oxide nanocolloids using metallosurfactant-based microemulsions: antioxidant activity, cellular, and genotoxicity toward Vitis vinifera

, , , &
Pages 892-909 | Received 12 Dec 2017, Accepted 09 Feb 2018, Published online: 27 Feb 2018

References

  • Aghili, Z., Taheri, S., Zeinabad, H. A., Pishkar, L., Saboury, A. A., Rahimi, A., & Falahati, M. (2016). Investigating the interaction of Fe nanoparticles with lysozyme by biophysical and molecular docking studies. PLoS ONE, 11(10), e0164878–e0164899. doi:10.1371/journal.pone.0164878. eCollection 2016
  • Andersson, M., Pedersen, J. S., & Palmqvist, A. E. (2005). Silver nanoparticle formation in microemulsions acting both as template and reducing agent. Langmuir, 21(24), 11387–11396. doi:10.1021/la050937j
  • Asl, B. A., Mogharizadeh, L., Khomjani, N., Rasti, B., Pishva, S. P., Akhtari, K., … Falahati, M. (2018). Probing the interaction of zero valent iron nanoparticles with blood system by biophysical, docking, cellular, and molecular studies. International Journal of Biological Macromolecules, 109, 639–650. doi:10.1016/j.ijbiomac.2017.12.085
  • Basu, S., Jana, S., Pande, S., & Pal, T. (2008). Interaction of DNA bases with silver nanoparticles: Assembly quantified through SPRS and SERS. Journal of Colloid and Interface Science, 321(2), 288–293. doi:10.1016/j.jcis.2008.02.015
  • Benn, T. M., & Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science and Technology, 42(11), 4133–4139. doi:10.1021/es7032718
  • Berry, C. C., Wells, S., Charles, S., Aitchison, G., & Curtis, A. S. (2004). Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials, 25(23), 5405–5413. doi:10.1016/j.biomaterials.2003.12.046
  • Berry, C. C., Wells, S., Charles, S., & Curtis, A. S. (2003). Dextran and albumin derivatised iron oxide nanoparticles: Influence on fibroblasts in vitro. Biomaterials, 24(25), 4551–4557. doi:10.1016/S0142-9612(03)00237-0
  • Burke, D. J., Pietrasiak, N., Situ, S. F., Abenojar, E. C., Porche, M., Kraj, P., … Samia, A. C. S. (2015). Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. International Journal of Molecular Sciences, 16(12), 23630–23650. doi:10.3390/ijms161023630
  • Chaudhary, S., Sharma, P., & Kumar, R. (2016). Hydroxyapatite doped CeO2 nanoparticles: Impact on biocompatibility and dye adsorption properties. RSC Advances, 6(67), 62797–62809. doi:10.1039/C6RA06933A
  • Chaudhary, S., Sharma, P., Singh, D., Umar, A., & Kumar, R. (2017). Chemical and pathogenic cleanup of wastewater using surface-functionalized CeO2 nanoparticles. ACS Sustainable Chemistry & Engineering, 5(8), 6803–6816. doi:10.1021/acssuschemeng.7b01041
  • Chaudhary, G. R., Singh, P., Kaur, G., Mehta, S. K., Kumar, S., & Dilbaghi, N. (2015). Multifaceted approach for the fabrication of metallomicelles and metallic nanoparticles using solvophobic bisdodecylaminepalladium (II) chloride as precursor. Inorganic Chemistry, 54(18), 9002–9012. doi:10.1021/acs.inorgchem.5b01171
  • Chiou, J. R., Lai, B. H., Hsu, K. C., & Chen, D. H. (2013). One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. Journal of Hazardous Materials, 248–249, 394–400. doi:10.1016/j.jhazmat.2013.01.030
  • Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21(10), 1166–1170. doi:10.1038/nbt875
  • Corredor, E., Testillano, P. S., Coronado, M. J., González-Melendi, P., Fernández-Pacheco, R., Marquina, C., … Risueño, M. C. (2009). Nanoparticle penetration and transport in living pumpkin plants: In situ subcellular identification. BMC Plant Biology, 9(1), 45–56. doi:10.1186/1471-2229-9-45
  • Darabi, F., Hadadzadeh, H., Simpson, J., & Shahpiri, A. (2016). A water-soluble Pd (II) complex with a terpyridine ligand: Experimental and molecular modeling studies of the interaction with DNA and BSA; and in vitro cytotoxicity investigations against five human cancer cell lines. New Journal of Chemistry, 40(11), 9081–9097. doi:10.1039/C6NJ01880G
  • El-Temsah, Y. S., & Joner, E. J. (2012). Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27(1), 42–49. doi:10.1002/tox.20610
  • Garg, P., Kaur, G., Chaudhary, G. R., Kaur, S., Gawali, S. L., & Hassan, P. A. (2018). Investigating the structural integrity of bovine serum albumin in presence of newly synthesized metallosurfactants. Colloids and Surfaces B: Biointerfaces, 164, 116–124. doi:10.1016/j.colsurfb.2018.01.025
  • Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental science & technology, 47(18), 10645–10652. doi:10.1021/es402249b
  • Gupta, A. K., & Curtis, A. S. (2004). Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. Journal of Materials Science: Materials in Medicine, 15(4), 493–496. doi:10.1023/B:JMSM.0000021126.32934.20
  • Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), 3995–4021. doi:10.1016/j.biomaterials.2004.10.012
  • Hajsalimi, G., Taheri, S., Shahi, F., Attar, F., Ahmadi, H., & Falahati, M. (2017). Interaction of iron nanoparticles with nervous system: An in vitro study. Journal of Biomolecular Structure and Dynamics, 1–10. doi:10.1080/07391102.2017.1302819
  • Haq, I. (2002). Thermodynamics of drug–DNA interactions. Archives of Biochemistry and Biophysics, 403(1), 1–15. doi:10.1016/S0003-9861(02)00202-3
  • Hawthorne, J., Musante, C., Sinha, S. K., & White, J. C. (2012). Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. International Journal of Phytoremediation, 14(4), 429–442. doi:10.1080/15226514.2011.620903
  • Hilger, I., Frühauf, S., Linß, W., Hiergeist, R., Andrä, W., Hergt, R., & Kaiser, W. A. (2003). Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells. Journal of Magnetism and Magnetic Materials, 261(1–2), 7–12. doi:10.1016/S0304-8853(01)00258-X
  • Jafari Azad, V., Kasravi, S., Alizadeh Zeinabad, H., Memar Bashi Aval, M., Saboury, A. A., Rahimi, A., & Falahati, M. (2017). Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles. Journal of Biomolecular Structure and Dynamics, 35(12), 2565–2577. doi:10.1080/07391102.2016.1222972
  • Jeyasubramanian, K., Gopalakrishnan Thoppey, U. U. G., Hikku, G. S., Selvakumar, N., Subramania, A., & Krishnamoorthy, K. (2016). Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Advances, 6(19), 15451–15459. doi:10.1039/C5RA23425E
  • Jose, G. P., Santra, S., Mandal, S. K., & Sengupta, T. K. (2011). Singlet oxygen-mediated DNA degradation by copper nanoparticles: Potential towards cytotoxic effect on cancer cells. Journal of Nanobiotechnology, 9(1), 9–17. doi:10.1186/1477-3155-9-9
  • Karakoti, A. S., Hench, L. L., & Seal, S. (2006). The potential toxicity of nanomaterials – The role of surfaces. JOM, 58(7), 77–82. doi:10.1007/s11837-006-0147-0
  • Kaur, G., Dogra, V., Kumar, R., Kumar, S., Bhanjana, G., Dilbaghi, N., & Singhal, N. K. (2018). DNA interaction, anti-proliferative effect of copper oxide nanocolloids prepared from metallosurfactant based microemulsions acting as precursor, template and reducing agent. International Journal of Pharmaceutics, 535(1–2), 95–105. doi:10.1016/j.ijpharm.2017.10.059
  • Kaur, G., Kumar, S., Dilbaghi, N., Kaur, B., Kant, R., Guru, S. K., … Jaglan, S. (2016). Evaluation of bishexadecyltrimethyl ammonium palladium tetrachloride based dual functional colloidal carrier as an antimicrobial and anticancer agent. Dalton Transactions, 45(15), 6582–6591. doi:10.1039/C6DT00312E
  • Kaur, G., Singh, P., Mehta, S. K., Kumar, S., Dilbaghi, N., & Chaudhary, G. R. (2017). A facile route for the synthesis of Co, Ni and Cu metallic nanoparticles with potential antimicrobial activity using novel metallosurfactants. Applied Surface Science, 404, 254–262. doi:10.1016/j.apsusc.2017.01.284
  • Keb-Llanes, M., González, G., Chi-Manzanero, B., & Infante, D. (2002). A rapid and simple method for small-scale DNA extraction inAgavaceae and other tropical plants. Plant Molecular Biology Reporter, 20, 299–299. doi:10.1007/BF02782465
  • Khodakovskaya, M. V., de Silva, K., Biris, A. S., Dervishi, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 6(3), 2128–2135. doi:10.1021/nn204643g
  • Klačanová, K., Fodran, P., Šimon, P., Rapta, P., Boča, R., Jorík, V., … Čaplovič, L. (2012). Formation of Fe (0)-nanoparticles via reduction of Fe(II) compounds by amino acids and their subsequent oxidation to iron oxides. Journal of Chemistry, 2013–2023. doi:10.1155/2013/961629
  • Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., … Lead, J. R. (2008). Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects. Environmental Toxicology and Chemistry, 27(9), 1825–1851. doi:10.1897/08-090.1
  • Kong, D. M., Wang, J., Zhu, L. N., Jin, Y. W., Li, X. Z., Shen, H. X., & Mi, H. F. (2008). Oxidative DNA cleavage by Schiff base tetraazamacrocyclic oxamido nickel(II) complexes. Journal of Inorganic Biochemistry, 102(4), 824–832. doi:10.1016/j.jinorgbio.2007.12.002
  • Kovacic, P., & Somanathan, R. (2010). Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): Electron transfer and reactive oxygen species. Journal of Nanoscience and Nanotechnology, 10(12), 7919–7930. doi:10.1166/jnn.2010.3028
  • Kypr, J., Kejnovska, I., Renciuk, D., & Vorlickova, M. (2009). Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Research, 37(6), 1713–1725. doi:10.1093/nar/gkp026
  • Labieniec, M., & Gabryelak, T. (2006). Interactions of tannic acid and its derivatives (ellagic and gallic acid) with calf thymus DNA and bovine serum albumin using spectroscopic method. Journal of Photochemistry and Photobiology B: Biology, 82(1), 72–78. doi:10.1016/j.jphotobiol.2005.09.005
  • Landsiedel, R., Kapp, M. D., Schulz, M., Wiench, K., & Oesch, F. (2009). Genotoxicity investigations on nanomaterials: Methods, preparation and characterization of test material, potential artifacts and limitations – Many questions, some answers. Mutation Research/Reviews in Mutation Research, 681(2–3), 241–258. doi:10.1016/j.mrrev.2008.10.002
  • Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y. C., Braam, J., & Alvarez, P. J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry, 29(3), 669–675. doi:10.1002/etc.58
  • Ma, X., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 408(16), 3053–3061. doi:10.1016/j.scitotenv.2010.03.031
  • Manojkumar, K., Prabhu Charan, K. T., Sivaramakrishna, A., Jha, P. C., Khedkar, V. M., Siva, R., … Vijayakrishna, K. (2015). Biophysical characterization and molecular docking studies of imidazolium based polyelectrolytes–DNA complexes: Role of hydrophobicity. Biomacromolecules, 16(3), 894–903. doi:10.1021/bm5018029
  • Meng, H., Xia, T., George, S., & Nel, A. E. (2009). A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano, 3(7), 1620–1627. doi:10.1021/nn9005973
  • Mirzaei, S., Hadadi, Z., Attar, F., Mousavi, S. E., Zargar, S. S., Tajik, A., … Falahati, M. (2017). ROS-mediated heme degradation and cytotoxicity induced by iron nanoparticles: Hemoglobin and lymphocyte cells as targets. Journal of Biomolecular Structure and Dynamics, 1–11. doi:10.1080/07391102.2017.1411832
  • Musante, C., & White, J. C. (2012). Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk-size particles. Environmental Toxicology, 27(9), 510–517. doi:10.1002/tox.20667
  • Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627. doi:10.1126/science.1114397
  • Otero, L., Smircich, P., Vieites, M., Ciganda, M., Severino, P. C., Terenzi, H., … Garat, B. (2007). DNA conformational changes and cleavage by ruthenium(II) nitrofurylsemicarbazone complexes. Journal of Inorganic Biochemistry, 101(1), 74–79. doi:10.1016/j.jinorgbio.2006.08.004
  • Peng, S., Wang, C., Xie, J., & Sun, S. (2006). Synthesis and stabilization of monodisperse Fe nanoparticles. Journal of the American Chemical Society, 128(33), 10676–10677. doi:10.1021/ja063969h
  • Priester, J. H., Ge, Y., Mielke, R. E., Horst, A. M., Moritz, S. C., Espinosa, K., … Schimel, J. P. (2012). Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences, 109(37), E2451–E2456. doi:10.1073/pnas.1205431109
  • Rahman, M. M., Khan, S. B., Jamal, A., Faisal, M., & Aisiri, A. M. (2011). Iron oxide nanoparticles. In M. Rahman (Ed.), Nanomaterials (pp. 43–66). InTech, Europe. ISBN 978-953-307-913-4. doi:10.5772/27698
  • Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94(2), 287–293. doi:10.1007/s00253-012-3969-4
  • Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485–3498. doi:10.1021/jf104517j
  • Salem, N. M., & Awwad, A. M. (2013). A novel approach for synthesis magnetite nanoparticles at ambient temperature. Nanoscience and Nanotechnology, 3(3), 35–39. doi:10.5923/j.nn.20130303.01
  • Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202–1205. doi:10.1016/j.foodchem.2008.08.008
  • Sobha, K., Surendranath, K., Meena, V., Jwala, T. K., Swetha, N., & Latha, K. S. M. (2010). Emerging trends in nanobiotechnology. Biotechnology and Molecular Biology Reviews, 4(1), 1–12. Retrieved from http://www.academicjournals.org/BMBR
  • Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24), 9473–9479. doi:10.1021/es901695c
  • Throbäck, I. N., Johansson, M., Rosenquist, M., Pell, M., Hansson, M., & Hallin, S. (2007). Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiology Letters, 270(2), 189–194. doi:10.1111/j.1574-6968.2007.00632.x
  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., … Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment, 424, 1–10. doi:10.1016/j.scitotenv.2012.02.023
  • Zhang, Y., Kohler, N., & Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23(7), 1553–1561. doi:10.1016/S0142-9612(01)00267-8
  • Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10(6), 713–717. doi:10.1039/B805998E

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.