351
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning

, &
Pages 982-999 | Received 13 Dec 2017, Accepted 17 Feb 2018, Published online: 02 Mar 2018

References

  • Adams, G. N., Rosenfeldt, L., Frederick, M., Miller, W., Waltz, D., Kombrinck, K., … Palumbo, J. S. (2015). Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Cancer Research, 75(19), 4235–4243. doi:10.1158/0008-5472.CAN-15-0964
  • Ageno, W., Gallus, A. S., Wittkowsky, A., Crowther, M., Hylek, E. M., & Palareti, G. (2012). Oral anticoagulant therapy. Chest, 141(2), e44S–e88S. doi:10.1378/chest.11-2292
  • Akhavan, S., Mannucci, P. M., Lak, M., Mancuso, G., Mazzucconi, M. G., Rocino, A., … Perkins, S. J. (2000). Identification and three-dimensional structural analysis of nine novel mutations in patients with prothrombin deficiency. Thrombosis and Haemostasis, 84(6), 989–997.
  • Akhavan, S., Rocha, E., Zeinali, S., & Mannucci, P. M. (1999). Gly319 → Arg substitution in the dysfunctional prothrombin Segovia. British Journal of Haematology, 105(3), 667–669. doi:10.1046/j.1365-2141.1999.01423.x
  • Amor, B. R. C., Schaub, M. T., Yaliraki, S. N., & Barahona, M. (2016). Prediction of allosteric sites and mediating interactions through bond-to-bond propensities. Nature Communications, 7, 12477. doi:10.1038/ncomms12477
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Bode, W., Turk, D., & Karshikov, A. (1992). The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: Structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Science : A Publication of the Protein Society, 1(4), 426–471. doi:10.1002/pro.5560010402
  • Bush, L. A., Nelson, R. W., & Di Cera, E. (2006). Murine thrombin lacks Na+ activation but retains high catalytic activity. Journal of Biological Chemistry, 281(11), 7183–7188. doi:10.1074/jbc.M512082200
  • Carter, I. S. R., Vanden Hoek, A. L., Pryzdial, E. L. G., & MacGillivray, R. T. A. (2010). Thrombin A-chain: Activation remnant or allosteric effector? Thrombosis, 2010, 1–9. doi:10.1155/2010/416167
  • Crawley, J. T. B., Zanardelli, S., Chion, C. K. N. K., & Lane, D. A. (2007). The central role of thrombin in hemostasis. Journal of Thrombosis and Haemostasis, 5(SUPPL. 1), 95–101. doi:10.1111/j.1538-7836.2007.02500.x
  • Daily, M. D., & Gray, J. J. (2009). Allosteric communication occurs via networks of tertiary and quaternary motions in proteins. PLoS Computational Biology, 5(2), doi:10.1371/journal.pcbi.1000293
  • Dang, Q. D., Guinto, E. R., & Cera, E. Di (1997). Rational engineering of activity and specificity in a serine protease. Nature Biotechnology, 15(2), 146–149. doi:10.1038/nbt0297-146
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Davie, E., & Kulman, J. (2006). An overview of the structure and function of thrombin. Seminars in Thrombosis and Hemostasis, 32(S 1), 003–015. doi:10.1055/s-2006-939550
  • De Amorim, R. C., & Hennig, C. (2015). Recovering the number of clusters in data sets with noise features using feature rescaling factors. Information Sciences, 324, 126–145. doi:10.1016/j.ins.2015.06.039
  • De Cristofaro, R., Carotti, A., Akhavan, S., Palla, R., Peyvandi, F., Altomare, C., & Mannucci, P. M. (2006). The natural mutation by deletion of Lys9 in the thrombin A-chain affects the pKa value of catalytic residues, the overall enzyme’s stability and conformational transitions linked to Na+ binding. FEBS Journal, 273(1), 159–169. doi:10.1111/j.1742-4658.2005.05052.x
  • De Cristofaro, R., Akhavan, S., Altomare, C., Carotti, A., Peyvandi, F., & Mannucci, P. M. (2004). A natural prothrombin mutant reveals an unexpected influence of A-chain structure on the activity of human α-Thrombin. Journal of Biological Chemistry, 279(13), 13035–13043. doi:10.1074/jbc.M312430200
  • De Cristofaro, R., Picozzi, M., Morosetti, R., & Landolfi, R. (1996). Effect of sodium on the energetics of thrombin – Thrombomodulin interaction and its relevance for protein C hydrolysis. Journal of Molecular Biology, 258(1), 190–200. doi:10.1006/jmbi.1996.0242
  • DiBella, E. E., Maurer, M. C., & Scheraga, H. A. (1995). Expression and folding of recombinant bovine prethrombin-2 and its activation to thrombin. Journal of Biological Chemistry, 270(1), 163–169. doi:10.1074/jbc.270.1.163
  • Di Cera, E. (2008). Thrombin. Molecular aspects of medicine, 29(4), 203–254. doi:10.1016/j.mam.2008.01.001
  • Di Cera, E., Guinto, E. R., Vindigni, A., Dang, Q. D., Ayala, Y. M., Wuyi, M., & Tulinsky, A. (1995). The Na+ binding site of thrombin. Journal of Biological Chemistry, 270(38), 22089–22092. doi:10.1074/jbc.270.38.22089
  • Ebert, M. P. A., Lamer, S., Meuer, J., Malfertheiner, P., Reymond, M., Buschmann, T., … Seibert, V. (2005). Identification of the thrombin light chain a as the single best mass for differentiation of gastric cancer patients from individuals with dyspepsia by proteome analysis. Journal of Proteome Research, 4(2), 586–590. doi:10.1021/pr049771i
  • Feenstra, K. A., Hess, B., & Berendsen, H. J. C. (1999). Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. Journal of Computational Chemistry, 20(8), 786–798. doi:10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B
  • Fuchs, J. E., Huber, R. G., Waldner, B. J., Kahler, U., Von Grafenstein, S., Kramer, C., & Liedl, K. R. (2015). Dynamics govern specificity of a protein-protein interface: Substrate recognition by thrombin. PLoS One, 10(10), 1–14. doi:10.1371/journal.pone.0140713
  • Fuglestad, B., Gasper, P. M., McCammon, J. A., Markwick, P. R. L., & Komives, E. A. (2013). Correlated motions and residual frustration in thrombin. The Journal of Physical Chemistry B, 117(42), 12857–12863. doi:10.1021/jp402107u
  • Fuglestad, B., Gasper, P. M., Tonelli, M., McCammon, J. A., Markwick, P. R. L., & Komives, E. A. (2012). The dynamic structure of thrombin in solution. Biophysical Journal, 103(1), 79–88. doi:10.1016/j.bpj.2012.05.047
  • Gandhi, P. S., Chen, Z., Mathews, F. S., & Di Cera, E. (2008). Structural identification of the pathway of long-range communication in an allosteric enzyme. Proceedings of the National Academy of Sciences, 105(6), 1832–1837. doi:10.1073/pnas.0710894105
  • Godwin, R., Gmeiner, W., & Salsbury, F. R. (2016). Importance of long-time simulations for rare event sampling in zinc finger proteins. Journal of Biomolecular Structure and Dynamics, 34(1), 125–134. doi:10.1080/07391102.2015.1015168
  • Godwin, R. C., Melvin, R., & Salsbury, F. R. (2015). Molecular Dynamics Simulations and Computer-Aided Drug Discovery. In W. Zhang (Ed.), Methods in Pharmacology and Toxicology (pp. 1–30). New York, NY: Springer New York. doi:10.1007/7653_2015_41
  • Gowers, R. J., Linke, M., Barnoud, J., Reddy, T. J. E., Melo, M. N., Seyler, S. L., … Beckstein, O. (2016). MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, (Scipy), Austin, Texas, 98–105.
  • Hageman, T. C., Endres, G. F., & Scheraga, H. A. (1975). Mechanism of action of thrombin on fibrinogen on the role of the a chain of bovine thrombin in specificity and in differentiating between thrombin and trypsin. Archives of Biochemistry and Biophysics, 171(1), 327–336. doi:10.1016/0003-9861(75)90039-9
  • Harvey, M. J., & De Fabritiis, G. (2009). An implementation of the smooth particle mesh ewald method on GPU hardware. Journal of Chemical Theory and Computation, 5(9), 2371–2377. doi:10.1021/ct900275y
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. doi:10.1016/0263-7855(96)00018-5
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. doi:10.1063/1.445869
  • Kingsford, C., & Salzberg, S. (2008). What are decision trees? Nature Biotechnology, 26(9), 1011–1013. doi:10.1038/nbt0908-1011.What
  • Kobrinsky, B., & Karpatkin, S. (2009). The role of thrombin in tumor biology. In M. E. Maragoudakis, & N. E. Tsopanoglou (Eds.), Thrombin (pp. 161–172). New York, NY: Springer, New York. doi:10.1007/978-0-387-09637-7_9
  • Krishnamoorthy, N., Gajendrarao, P., Olivotto, I., & Yacoub, M. (2017). Impact of disease-causing mutations on inter-domain interactions in cMyBP-C: A steered molecular dynamics study. Journal of Biomolecular Structure and Dynamics, 35(9), 1916–1922. doi:10.1080/07391102.2016.1199329
  • Kurisaki, I., Takayanagi, M., & Nagaoka, M. (2015). Toward understanding allosteric activation of thrombin: A conjecture for important roles of unbound Na+ molecules around thrombin. The Journal of Physical Chemistry B, 119(9), 3635–3642. doi:10.1021/jp510657n
  • Lechner, D., Kollars, M., Gleiss, A., Kyrle, P. A., & Weltermann, A. (2007). Chemotherapy-induced thrombin generation via procoagulant endothelial microparticles is independent of tissue factor activity. Journal of Thrombosis and Haemostasis, 5(12), 2445–2452. doi:10.1111/j.1538-7836.2007.02788.x
  • Lefkowitz, J. B., Haver, T., Clarke, S., Jacobson, L., Weller, A., Nuss, R., … Hathaway, W. E. (2000). The prothrombin Denver patient has two different prothrombin point mutations resulting in Glu-300Lys and Glu-309Lys substitutions. British Journal of Haematology, 108(1), 182–187. doi:10.1046/j.1365-2141.2000.01810.x
  • Lemons, D. S. (1997). Paul Langevin’s 1908 paper ‘On the Theory of Brownian Motion’ [‘Sur la théorie du mouvement brownien,’ C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]. American Journal of Physics, 65(11), 1079. doi:10.1119/1.18725
  • Liu, P., Agrafiotis, D. K., & Theobald, D. L. (2009). Fast determination of the optimal rotational matrix for macromolecular superpositions. Journal of Computational Chemistry, 31(16), 1561–1563. doi:10.1002/jcc.21439
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins †. The Journal of Physical Chemistry B, 102(18), 3586–3616. doi:10.1021/jp973084f
  • Mackerell, A. D., Feig, M., & Brooks, C. L. (2004). Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulation. Journal of Computational Chemistry, 25(11), 1400–1415. doi:10.1002/jcc.20065
  • Mandal, R. S., Panda, S., & Das, S. (2017). In silico prediction of drug resistance due to S247R mutation of Influenza H1N1 neuraminidase protein. Journal of Biomolecular Structure and Dynamics, 1102, 1–15. doi:10.1080/07391102.2017.1305295
  • Melvin, R. L., Godwin, R. C., Xiao, J., Thompson, W. G., Berenhaut, K. S., & Salsbury, F. R. (2016). Uncovering large-scale conformational change in molecular dynamics without prior knowledge. Journal of Chemical Theory and Computation, 12(12), 6130–6146. doi:10.1021/acs.jctc.6b00757
  • Melvin, R. L., & Salsbury, F. R. (2016a). Visualizing ensembles in structural biology. Journal of Molecular Graphics and Modelling, 67, 44–53. doi:10.1016/j.jmgm.2016.05.001
  • Melvin, R., & Salsbury, F. (2016b, January 1). HDBSCAN and Amorim-Hennig for MD. Figshare. doi:10.6084/m9.figshare.3398266.v1
  • Melvin, R. L., Thompson, W. G., Godwin, R. C., Gmeiner, W. H., & Salsbury, F. R. (2017). MutSα’s multi-domain allosteric response to three DNA damage types revealed by machine learning. Frontiers in Physics, 5(March), 10. doi:10.3389/fphy.2017.00010
  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327. doi:10.1002/jcc.21787
  • Mukherjee, S. D., Swystun, L. L., Mackman, N., Wang, J.-G., Pond, G., Levine, M. N., & Liaw, P. C. (2009). Impact of chemotherapy on thrombin generation and on the protein C pathway in breast cancer patients. Pathophysiology of Haemostasis and Thrombosis, 37(2-4), 88–97. doi:10.1159/000324166
  • Myers, J. K., & Pace, C. N. (1996). Hydrogen bonding stabilizes globular proteins. Biophysical Journal, 71(4), 2033–2039. doi:10.1016/S0006-3495(96)79401-8
  • Nierodzik, M. L., & Karpatkin, S. (2006). Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell, 10(5), 355–362. doi:10.1016/j.ccr.2006.10.002
  • Orthner, C. L., & Kosow, D. P. (1980). Evidence that human α-thrombin is a monovalent cation-activated enzyme. Archives of Biochemistry and Biophysics, 202(1), 63–75. doi:10.1016/0003-9861(80)90406-3
  • Papaconstantinou, M. E., Bah, A., & Di Cera, E. (2008). Role of the A chain in thrombin function. Cellular and Molecular Life Sciences, 65(12), 1943–1947. doi:10.1007/s00018-008-8179-y
  • Radjabi, A. R., Sawada, K., Jagadeeswaran, S., Eichbichler, A., Kenny, H. A., Montag, A., … Lengyel, E. (2008). Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and 1-integrin on the cell surface. Journal of Biological Chemistry, 283(5), 2822–2834. doi:10.1074/jbc.M704855200
  • Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(C), 53–65. doi:10.1016/0377-0427(87)90125-7
  • Russo Krauss, I., Merlino, A., Randazzo, A., Novellino, E., Mazzarella, L., & Sica, F. (2012). High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity. Nucleic Acids Research, 40(16), 8119–8128. doi:10.1093/nar/gks512
  • Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. doi:10.1006/jmbi.1993.1626
  • Salsbury, F. R., Jr (2010). Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Current Opinion in Pharmacology, 10(6), 738–744. doi:10.1016/j.coph.2010.09.016
  • Scherer, M. K., Trendelkamp-Schroer, B., Paul, F., Pérez-Hernández, G., Hoffmann, M., Plattner, N., … Noé, F. (2015). PyEMMA 2: A software package for estimation, validation, and analysis of markov models. Journal of Chemical Theory and Computation, 11(11), 5525–5542. doi:10.1021/acs.jctc.5b00743
  • Schwienhorst, A. (2006). Direct thrombin inhibitors – a survey of recent developments. Cellular and Molecular Life Sciences, 63(23), 2773–2791. doi:10.1007/s00018-006-6219-z
  • Shrake, A., & Rupley, J. A. (1973). Environment and exposure to solvent of protein atoms. Lysozyme and insulin. Journal of Molecular Biology, 79(2), 351–371. doi:10.1016/0022-2836(73)90011-9
  • Srivastava, A., Tracka, M. B., Uddin, S., Casas-Finet, J., Livesay, D. R., & Jacobs, D. J. (2016). Mutations in antibody fragments modulate allosteric response via hydrogen-bond network fluctuations. Biophysical Journal, 110(9), 1933–1942. doi:10.1016/j.bpj.2016.03.033
  • Steiner, T. (2002). The hydrogen bond in the solid state. Angewandte Chemie International Edition, 41(1), 49–76. doi:10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
  • Sun, W. Y., Burkart, M. C., Holahan, J. R., & Degen, S. J. (2000). Prothrombin San Antonio: A single amino acid substitution at a factor Xa activation site (Arg320 to His) results in dysprothrombinemia. Blood, 95(2), 711–714.
  • Sutthibutpong, T., Rattanarojpong, T., & Khunrae, P. (2017). Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays. Journal of Biomolecular Structure and Dynamics, 1102, 1–15. doi:10.1080/07391102.2017.1404934
  • Theobald, D. L. (2005). Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallographica Section A: Foundations of Crystallography, 61(4), 478–480. doi:10.1107/S0108767305015266
  • Thirumal Kumar, D., George Priya Doss, C., Sneha, P., Tayubi, I. A., Siva, R., Chakraborty, C., & Magesh, R. (2017). Influence of V54 M mutation in giant muscle protein titin: A computational screening and molecular dynamics approach. Journal of Biomolecular Structure and Dynamics, 35(5), 917–928. doi:10.1080/07391102.2016.1166456
  • Tompa, D. R., & Kadhirvel, S. (2017). Molecular dynamics of a far positioned SOD1 mutant V14 M reveals pathogenic misfolding behavior. Journal of Biomolecular Structure and Dynamics, 1102, 1–14. doi:10.1080/07391102.2017.1407675
  • van Gunsteren, W. F., & Berendsen, H. J. C. (1977). Algorithms for macromolecular dynamics and constraint dynamics. Molecular Physics, 34(5), 1311–1327. doi:10.1080/00268977700102571
  • Xiao, J., Melvin, R. L., & Salsbury, F. R. (2017). Mechanistic insights into thrombin’s switch between ‘slow’ and ‘fast’ forms. Physical Chemistry Chemical Physics, 19(36), 24522–24533. doi:10.1039/C7CP03671 J
  • Zavyalova, E., & Kopylov, A. (2015). Exploring potential anticoagulant drug formulations using thrombin generation test. Biochemistry and Biophysics Reports, 5, 111–119. doi:10.1016/j.bbrep.2015.11.011
  • Zhang, E., & Tulinsky, A. (1997). The molecular environment of the Na+ binding site of thrombin. Biophysical Chemistry, 63(2-3), 185–200. doi:10.1016/S0301-4622(96)02227-2
  • Zhao, F.-L., Yang, G.-H., Xiang, S., Gao, D.-D., & Zeng, C. (2017). In silico analysis of the effect of mutation on epidermal growth factor receptor in non-small-cell lung carcinoma: From mutational analysis to drug designing. Journal of Biomolecular Structure and Dynamics, 35(2), 427–434. doi:10.1080/07391102.2016.1146165

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.