310
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Atomistic mechanisms of the double proton transfer in the H-bonded nucleobase pairs: QM/QTAIM computational lessons

ORCID Icon & ORCID Icon
Pages 1880-1907 | Received 31 Jan 2018, Accepted 05 Mar 2018, Published online: 17 May 2018

References

  • Arabi, A. , & Matta, C. F. (2011). Effects of external electric fields on double proton transfer kinetics in the formic acid dimer. Physical Chemistry Chemical Physics , 13 , 13738–13748. doi:10.1039/c1cp20175a
  • Atkins, P. W. (1998). Physical chemistry . Oxford: Oxford University Press.
  • Bader, R. F. W. (1990). Atoms in molecules: A quantum theory . Oxford: Oxford University Press.
  • Bebenek, K. , Pedersen, L. C. , & Kunkel, T. A. (2011). Replication infidelity via a mismatch with Watson−Crick geometry. Proceeding of the National Academy of Sciences of the United States of America , 108 , 1862–1867. doi:10.1073/pnas.1012825108
  • Bell, R. P. (1973). The proton in chemistry . London: Chapman and Hall.10.1007/978-1-4757-1592-7
  • Bell, R. P. (1980). The tunnel effect in chemistry . London: Chapman and Hall.10.1007/978-1-4899-2891-7
  • Boutis, T. (1992). Proton transfer in hydrogen bonded systems . New York, NY : Plenum.10.1007/978-1-4615-3444-0
  • Brovarets’, O. O. (2015). Microstructural mechanisms of the origin of the spontaneous point mutations ( DrSci Thesis). Taras Shevchenko National University of Kyiv, Kyiv.
  • Brovarets’, O. O. (2010). Physico-chemical nature of the spontaneous and induced by the mutagens transitions and transversions ( PhD Thesis). Taras Shevchenko National University of Kyiv, Kyiv.
  • Brovarets’, O. O. , & Hovorun, D. M. (2013a). Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. Journal of Computational Chemistry , 34 , 2577–2590. doi:10.1002/jcc.23412
  • Brovarets’, O. O. , & Hovorun, D. M. (2013b). Atomistic nature of the DPT tautomerisation of the biologically important C·C* DNA base mispair containing amino and imino tautomers of cytosine: A QM and QTAIM approach. Physical Chemistry Chemical Physics , 15 , 20091–20104. doi:10.1039/c3cp52644e
  • Brovarets’ O. O. , & Hovorun D. M. (2013c). Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: An exhaustive quantum-chemical analysis. Journal of Biomolecular Structure and Dynamics , 31 , 913–936. doi:10.1080/07391102.2012.715041
  • Brovarets’, O. O. , & Hovorun, D. M. (2014a). Does the G·G*syn DNA mismatch containing canonical and rare tautomers of the guanine tautomerise through the DPT? A QM/QTAIM microstructural study. Molecular Physics , 112 , 3033–3046. doi:10.1080/00268976.2014.927079
  • Brovarets’, O. O. , & Hovorun, D. M. (2014b). Can tautomerisation of the A∙T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. Journal of Biomolecular Structure and Dynamics , 32 , 127–154. doi:10.1080/07391102.2012.755795
  • Brovarets’, O. O. , & Hovorun, D. M. (2014c). DPT tautomerisation of the G·Asyn and A*·G*syn DNA mismatches: A QM/QTAIM combined atomistic investigation. Physical Chemistry Chemical Physics , 16 , 9074–9085. doi:10.1039/c4cp00488d
  • Brovarets’, O. O. , & Hovorun, D. M. (2014d). How does the long G·G* Watson-Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation. Physical Chemistry Chemical Physics , 16 , 15886–15899. doi:10.1039/c4cp01241k
  • Brovarets’, O. O. , & Hovorun, D. M. (2014e). Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis. Journal of Biomolecular Structure & Dynamics , 32 , 1474–1499. doi:10.1080/07391102.2013.822829
  • Brovarets’, O. O. , & Hovorun, D. M. (2015a). The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding. Journal of Biomolecular Structure & Dynamics , 33 , 28–55. doi:10.1080/07391102.2013.852133
  • Brovarets’, O. O. , & Hovorun, D. M. (2015b). How many tautomerisation pathways connect Watson-Crick-like G*·T DNA base mispair and wobble mismatches? Journal of Biomolecular Structure & Dynamics , 33 , 2297–2315. doi:10.1080/07391102.2015.1046936
  • Brovarets’, O. O. , & Hovorun, D. M. (2015c). The nature of the transition mismatches with Watson-Crick architecture: The G*·T or G·T* DNA base mispair or both? A QM/ QTAIM perspective for the biological problem. Journal of Biomolecular Structure & Dynamics , 33 , 925–945. doi:10.1080/07391102.2014.924879
  • Brovarets’, O. O. , & Hovorun, D. M. (2015d). Tautomeric transition between wobble A·C DNA base mispair and Watson–Crick-like A·C* mismatch: Microstructural mechanism and biological significance. Physical Chemistry Chemical Physics , 17 , 15103–15110. doi:10.1039/c5cp01568e
  • Brovarets’, O. O. , & Hovorun, D. M. (2015e). A novel conception for spontaneous transversions caused by homo-pyrimidine DNA mismatches: A QM/QTAIM highlight. Physical Chemistry Chemical Physics , 17 , 21381–21388. doi:10.1039/c5cp03211c
  • Brovarets’, O. O. , & Hovorun, D. M. (2015f). Novel physicochemical mechanism of the mutagenic tautomerisation of the Watson-Crick-like A·G and C·T DNA base mispairs: A quantum-chemical picture. RSC Advances , 5 , 66318–66333. doi:10.1039/C5RA11773A
  • Brovarets’, O. O. , & Hovorun, D. M. (2015g). Wobble↔Watson-Crick tautomeric transitions in the homo-purine DNA mismatches: A key to the intimate mechanisms of the spontaneous transversions. Journal of Biomolecular Structure & Dynamics , 33 , 2710–2715. doi:10.1080/07391102.2015.1077737
  • Brovarets’, O. O. , & Hovorun, D. M. (2015h). Proton tunneling in the A∙T Watson-Crick DNA base pair: Myth or reality? Journal of Biomolecular Structure & Dynamics , 33 , 2716–2720. doi:10.1080/07391102.2015.1092886
  • Brovarets’, O. O., Kolomiets’, I. M. , & Hovorun, D. M. (2012). Elementary molecular mechanisms of the spontaneous point mutations in DNA: A novel quantum-chemical insight into the classical understanding. In T. Tada (Ed.), Quantum chemistry – molecules for innovations . InTech Open. Retrieved from http://www.intechopen.com/books/quantum-chemistry-molecules-for-innovations/elementary-molecular-mechanisms-of-the-spontaneous-point-mutations-in-dna-a-novel-quantum-chemical-i
  • Brovarets’, O. O. , & Pérez-Sánchez, H. E. (2016). Whether the amino-imino tautomerism of 2-aminopurine is involved into its mutagenicity? Results of a thorough QM investigation. RSC Advances , 110 , 108255–108264. doi:10.1039/C6RA24277D
  • Brovarets’, O. O. , & Pérez-Sánchez, H. E. (2017). Whether 2-aminopurine induces incorporation errors at the DNA replication? A quantum-mechanical answer on the actual biological issue. Journal of Biomolecular Structure & Dynamics , 35 , 3398–3411. doi:10.1080/07391102.2016.1253504
  • Brovarets’, O. O. , Pérez-Sánchez, H. E. , & Hovorun, D. M. (2016). Structural grounds for the 2-aminopurine mutagenicity: A novel insight into the old problem of the replication errors. RSC Advances , 6 , 99546–99557. doi:10.1039/C6RA17787E
  • Brovarets’, O. O. , Voiteshenko, I. , & Hovorun, D. M. (2018). Physico-chemical profiles of the wobble↔Watson-Crick G*·2AP(w)↔G·2AP(WC) and A·2AP(w)↔A*·2AP(WC) tautomerisations: A QM/QTAIM comprehensive survey. Physical Chemistry Chemical Physics , 20 , 623–636. doi:10.1039/c7cp05139e
  • Brovarets’, O. O. , Voiteshenko, I. , Pérez-Sánchez, H. E. , & Hovorun, D. M. (2017a). A QM/QTAIM research under the magnifying glass of the DPT tautomerisation of the wobble mispairs involving 2-aminopurine. New Journal of Chemistry , 41 , 7232–7243. doi:10.1039/C7NJ00717E
  • Brovarets’, O. O. , Voiteshenko, I. , Pérez-Sánchez, H. E. , & Hovorun, D. M. (2018). A QM/QTAIM detailed look at the Watson-Crick↔wobble tautomeric transformations of the 2-aminopurine·pyrimidine mispairs. Journal of Biomolecular Structure & Dynamics , 36, 1649–1665. doi:10.1080/07391102.2017.1331864
  • Brovarets’, O. O. , Yurenko, Y. P. , Dubey, I. Y. , & Hovorun, D. M. (2012). Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study. Journal of Biomolecular Structure & Dynamics , 29 , 1101–1109. doi:10.1080/07391102.2011.672624
  • Brovarets’, O. O. , Yurenko, Y. P. , & Hovorun, D. M. (2013). Intermolecular СН∙∙∙О/N H-bonds in the biologically important pairs of natural nucleobases: A thorough quantum-chemical study. Journal of Biomolecular Structure & Dynamics , 32 , 993–1022. doi:10.1080/07391102.2013.799439
  • Brovarets’, O. O. , Yurenko, Y. P. , & Hovorun, D. M. (2015). The significant role of the intermolecular СН∙∙∙О/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: A comprehensive theoretical investigation. Journal of Biomolecular Structure & Dynamics , 33 , 1624–1652. doi:10.1080/07391102.2013.799439
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2013a). The physico-chemical “anatomy” of the tautomerisation through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. Journal of Molecular Modeling , 19 , 4119–4137. doi:10.1007/s00894-012-1720-9
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2013b). DPT tautomerization of the long A∙A* Watson-Crick base pair formed by the amino and imino tautomers of adenine: Combined QM and QTAIM investigation. Journal of Molecular Modeling , 19 , 4223–4237. doi:10.1007/s00894-013-1880-2
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2013). The physico-chemical mechanism of the tautomerisation via the DPT of the long Hyp*·Hyp Watson– Crick base pair containing rare tautomer: A QM and QTAIM detailed look. Chemical Physics Letters , 578 , 126–132. doi:10.1016/j.cplett.2013.05.067
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2014a). Structural, energetic and tautomeric properties of the T·T*/T*·T DNA mismatch involving mutagenic tautomer of thymine: A QM and QTAIM insight. Chemical Physics Letters , 592 , 247–255. doi:10.1016/j.cplett.2013.12.034
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2014b). Does the tautomeric status of the adenine bases change upon the dissociation of the A*·A syn Topal-Fresco DNA mismatch? A combined QM and QTAIM atomistic insight. Physical Chemistry Chemical Physics , 16 , 3715–3725. doi:10.1039/c3cp54708f
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2014c). Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. Journal of Computational Chemistry , 35 , 451–466. doi:10.1002/jcc.23515
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2014d). A QM/QTAIM microstructural analysis of the tautomerisation via the DPT of the hypoxanthine·adenine nucleobase pair. Molecular Physics , 112 , 2005–2016. doi:10.1080/00268976.2013.877170
  • Brovarets’, O. O. , Zhurakivsky, R. O. , & Hovorun, D. M. (2015). DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments. Journal of Biomolecular Structure and Dynamics , 33 , 674–689. doi:10.1080/07391102.2014
  • Cerón-Carrasco, J. P. , Cerezo, J. , & Jacquemin, D. (2014). How DNA is damaged by external electric fields: Selective mutation vs. random degradation. Physical Chemistry Chemical Physics , 16 , 8243–8246. doi:10.1039/C3CP54518K
  • Cerón-Carrasco, J. P. , & Jacquemin, D. (2013a). Electric field induced DNA damage: An open door for selective mutations. Chemical Communications , 49 , 7578–7580. doi:10.1039/C3CC42593B
  • Cerón-Carrasco, J. P. , & Jacquemin, D. (2013b). Electric-field induced mutation of DNA: A theoretical investigation of the GC base pair. Physical Chemistry Chemical Physics , 15 , 4548–4553. doi:10.1039/C2CP44066K
  • Danilov, V. I. , Anisimov, V. M. , Kurita, N. , & Hovorun, D. (2005). MP2 and DFT studies of the DNA rare base pairs: The molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chemical Physics Letters , 412 , 285–293. doi:10.1016/j.cplett.2005.06.123
  • Danilov, V. I. , & Kventsel, G. F. (1971). Electronic representations in the point mutation theory . Kyiv: Naukova Dumka.
  • Duarte, F. , Vöhringer-Martinez, E. , & Toro-Labbé, A. (2011). Insights on the mechanism of proton transfer reactions in amino acids. Physical Chemistry Chemical Physics , 13 , 7773–7782. doi:10.1039/c0cp02076a
  • Eigen, M. (1964). Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angewandte Chemie International Edition , 3 , 1–19. doi:10.1002/anie.196400011
  • Espinosa, E. , Molins, E. , & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters , 285 , 170–173. doi:10.1016/S0009-2614(98)00036-0
  • Florian, J. , Hrouda, V. , & Hobza, P. (1994). Proton transfer in the adenine-thymine base pair. Journal of the American Chemical Society , 116 , 1457–1460. doi:10.1021/ja00083a034
  • Gorb, L. , Podolyan, Y. , Dziekonski, P. , Sokalski, W. A. , & Leszczynski, J. (2004). Double-proton transfer in adenine−thymine and guanine−cytosine base pairs. A post-hartree−fock ab initio study. Journal of the American Chemical Society , 126 , 10119–10129. doi:10.1021/-ja049155n
  • Govorun, D. M. , Danchuk, V. D. , Mishchuk, Y. R. , Kondratyuk, I. V. , Radomsky, N. F. , & Zheltovsky, N. V. (1992). AM1 calculation of the nucleic acid bases structure and vibrational spectra. Journal of Molecular Structure , 267 , 99–103. doi:10.1016/0022-2860(92)87016-O
  • Guzmán-Angel, D. , Inostroza-Rivera, R. , Gutiérrez-Oliva, S. , Herrera, B. , & Toro-Labbé, A. (2016). Role of water in intramolecular proton transfer reactions of formamide and thioformamide. Theoretical Chemistry Accounts , 135 , 617. doi:10.1007/s00214-015-1774-8
  • Hargis, J. C. , Vöhringer-Martinez, E. , Woodcock, H. L. , Toro-Labbé, A. , & Schaefer, H. F., 3rd (2011). Characterizing the mechanism of the double proton transfer in the formamide dimer. Journal of Physical Chemistry A , 115 , 2650–2657. doi:10.1021/jp111834v
  • Hovorun, D. M. (1997). A structural isomerism of nucleotide bases: AM1 calculation. Biopolymers & Cell , 13 , 127–134. doi:10.7124/bc.000474
  • Hovorun, D. M. , Gorb, L. , & Leszczynski, J. (1999). From the nonplanarity of the amino group to the structural nonrigidity of the molecule: A post-Hartree-Fock ab initio study of 2-aminoimidazole. International Journal of Quantum Chemistry , 75 , 245–253. doi:10.1002/(SICI)1097-461X(1999)75:3<245::AID-QUA14>3.0.CO;2-0
  • Hratchian, H. P. , & Schlegel, H. B. (2005). Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In Dykstra, C. E. , Frenking, G. , Kim, K. S. , & Scuseria, G. (Eds.), Theory and applications of computational chemistry: The first 40 years (pp. 195-249). Amsterdam: Elsevier. doi:10.1016/B978-044451719-7/50053-6
  • Inostroza-Rivera, R. , Yahia-Ouahmed, M. , Tognetti, V. , Joubert, L. , Herrera, B. , & Toro-Labbé, A. (2015). Atomic decomposition of conceptual DFT descriptors: Application to proton transfer reactions. Physical Chemistry Chemical Physics , 17 , 17797–17808. doi:10.1039/C5CP01515D
  • Jacquemin, D. , Zúñiga, J. , Requena, A. , & Céron-Carrasco, J. P. (2014). Assessing the importance of proton transfer reactions in DNA. Accounts of Chemical Research , 47 , 2467–2474. doi:10.1021/ar500148c
  • Jaque, P. , Toro-Labbé, A. , Politzer, P. , & Geerlings, P. (2008). Reaction force constant and projected force constants of vibrational modes along the path of an intramolecular proton transfer reaction. Chemical Physics Letters , 456 , 135–140. doi:10.1016/j.cplett.2008.03.054
  • Jin, L. , Lv, M. , Zhao, M. , Wang, R. , Zhao, C. , Lu, J. , … Wei, Y. (2017). Formic acid catalyzed isomerization of protonated cytosine: A lower barrier reaction for tautomer production of potential biological importance. Physical Chemistry Chemical Physics , 19 , 13515–13523. doi:10.1039/c7cp01008 g
  • Jin, L. , Shi, Sh , Zhao, Y. , Luo, L. , Zhao, C. , Lu, J. , & Jiang, M. (2018). Effects of C5-substituent group on the hydrogen peroxide-mediated tautomerisation of protonated cytosine: A theoretical perspective. Molecular Physics , 116 , 471–481. doi:10.1080/00268976.2017.1406159
  • Karran, P. , & Lindahl, T. (1980). Hypoxanthine in deoxyribonucleic acid: Generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry , 19 , 6005–6011. doi:10.1021/bi00567a010
  • Kirby, A. J. (1997). Efficiency of proton transfer catalysis in models and enzymes. Accounts of Chemical Research , 30 , 290–296. doi:10.1021/ar960056r
  • Koch, M. , Pagan, M. , Persson, M. , Gawinkowski, S. , Waluk, J. , & Kumagai, T. (2017). Direct observation of double hydrogen transfer via quantum tunneling in a single porphycene molecule on a Ag(110) surface. Journal of the American Chemical Society , 139 , 12681–12687. doi:10.1021/jacs.7b06905
  • Kondratyuk, I. V. , Samijlenko, S. P. , & Kolomiets’, I. M. , & Hovorun, D. M. (2000). Prototropic molecular-zwitterionic tautomerism of xanthine and hypoxanthine. Journal of Molecular Structure , 523 , 109–118. doi:10.1016/S0022-2860(99)00385-3
  • Löwdin, P.-O. (1963). Proton tunneling in DNA and its biological implications. Reviews in Modern Physics , 35 , 724–732. doi:10.1103/RevModPhys.35.724
  • Löwdin, P.-O. (1966). Quantum genetics and the aperiodic solid: Some aspects on the biological problems of heredity, mutations, aging, and tumors in view of the quantum theory of the DNA molecule. In P.-O. Löwdin (Ed.), Advances in Quantum Chemistry (pp. 213–360). New York, NY : Academic Press. Retrieved from http://www.researchgate.net/publication/235183358_QUANTUM_GENETICS_AND_THE_APERIODIC_SOLID_SOME_ASPECTS_ON_THE_BIOLOGICAL_PROBLEMS_OF_HEREDITY_MUTATIONS_AGEING_AND_TUMORS_IN_VIEW_OF_THE_QUANTUM_THEORY_OF_THE_DNA_MOLECULE
  • Lozynski, M. , Rusinska-Roszak, D. , & Mack, H.-G. (1998). Hydrogen bonding and density functional calculations: The B3LYP approach as the shortest way to MP2 results. Journal of Physical Chemistry A , 102 , 2899–2903. doi:10.1021/jp973142x
  • Markova, N. , Pejov, L. , Stoyanova, N. , & Enchev, V. (2017). Hybrid MC/QC simulations of water-assisted proton transfer in nucleosides. Guanosine and its analog acyclovir. Journal of Biomolecular Structure and Dynamics , 35 , 1168–1188. doi:10.1080/07391102.2016.1179594
  • Mata, I. , Alkorta, I. , Espinosa, E. , & Molins, E. (2011). Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chemical Physics Letters , 507 , 185–189. doi:10.1016/j.cplett.2011.03.055
  • Matta, C. F. (2010). How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules. Journal of Computational Chemistry , 31 , 1297–1311. doi:10.1002/jcc.21417
  • Matta, C. F. , & Boyd, R. J. (2007). The quantum theory of Atoms in Molecules: From solid state to DNA and drug design . KGaA: Wiley-VCH Verlag GmbH & Co.10.1002/9783527610709
  • Matta, C. F. , Castillo, N. , & Boyd, R. J. (2006). Extended weak bonding interactions in DNA: π-Stacking (base-base), base-backbone, and backbone-backbone interactions. Journal of Physical Chemistry B , 110 , 563–578.10.1021/jp054986 g
  • Maximoff, S. N. , Kamerlin, Sh. C. L. , & Florian, J. (2017). DNA polymerase λ active site favors a mutagenic mispair between the enol form of deoxyguanosine triphosphate substrate and the keto form of thymidine template: A free energy perturbation study. Journal of Physical Chemistry B , 121 , 7813–7822. doi:10.1021/acs.jpcb.7b04874
  • Mertz, E. L. , & Krishtalik, L. I. (2000). Low dielectric response in enzyme active site. Proceedings of the National Academy of Sciences of USA , 97 , 2081–2086. doi:10.1073/pnas.050316997
  • Murray, J. S. , Toro-Labbé, A. , Clark, T. , & Politzer, P. (2009). Analysis of diatomic bond dissociation and formation in terms of the reaction force and the position-dependent reaction force constant. Journal of Molecular Modeling , 15 , 701–706. doi:10.1007/s00894-008-0400-2
  • Nikolaienko, T. Y. , Bulavin, L. A. , & Hovorun, D. M. (2011). How flexible are DNA constituents? The quantum-mechanical study. Journal of Biomolecular Structure & Dynamics , 29 , 563–575. doi:10.1080/07391102.2011.10507406
  • Padermshoke, A. , Katsumoto, Y. , Masaki, R. , & Aida, M. (2008). Thermally induced double proton transfer in GG and wobble GT base pairs: A possible origin of the mutagenic guanine. Chemical Physics Letters , 457 , 232–236. doi:10.1016/j.cplett.2008.04.029
  • Palafox, M. A. , & Rastogi, V. K. (2016). Density functional computations on 6-aminouracil: Effect of amino group in the 6th position on the Watson-Crick base pair uridine–adenosine. Australian Journal of Chemistry , 69 , 881–889. doi:10.1071/CH15793
  • Petrushka, J. , Sowers, L. C. , & Goodman, M. (1986). Comparison of nucleotide interactions in water, proteins, and vacuum: Model for DNA polymerase fidelity. Proceeding of the National Academy of Sciences of USA , 83 , 1559–1562. doi:10.1073/pnas.83.6.1559
  • Platonov, M. O. , Samijlenko, S. P. , Sudakov, O. O. , Kondratyuk, I. V. , & Hovorun, D. M. (2005). To what extent can methyl derivatives be regarded as stabilized tautomers of xanthine? Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy , 62 , 112–114. doi:10.1016/j.saa.2004.12.012
  • Politzer, P. , Murray, J. S. , & Jaque, P. (2013). Perspectives on the reaction force constant. Journal of Molecular Modeling , 19 , 4111–4118. doi:10.1007/s00894-012-1713-8
  • Romero, E. E. , & Hernandez, F. E. (2017). Solvent effect on the intermolecular proton transfer of the Watson and Crick guanine-cytosine and adenine-thymine base pairs: A polarizable continuum model study. Physical Chemistry Chemical Physics , 20 , 1198–1209.
  • Ronen, A. (1980). 2-Aminopurine. Mutation Research/Reviews in Genetic Toxicology , 75 , 1–47. doi:10.1016/0165-1110(80)90026-3
  • Roßbach, S. , & Ochsenfeld, Ch. (2017). Influence of coupling and embedding schemes on QM size convergence in QM/MM approaches for the example of a proton transfer in DNA. Journal of Chemical Theory and Computation , 13 , 1102–1107.10.1021/acs.jctc.6b00727
  • Ruiz-Blanco, Y. B. , Almeida, Y. , Sotomayor-Torres, C. M. , & García, Y. (2017). Unveiled electric profiles within hydrogen bonds suggest DNA base pairs with similar bond strengths. PLoS One , 12 , e0185638. doi:10.1371/journal.pone.0185638
  • Saenger, W. (1984). Principles of nucleic acid structure . New York, NY : Springer.10.1007/978-1-4612-5190-3
  • Samijlenko, S. P. , Krechkivska, O. M. , Kosach, D. A. , & Hovorun, D. M. (2004). Transitions to high tautomeric states can be induced in adenine by interactions with carboxylate and sodium ions: DFT calculation data. Journal of Molecular Structure , 708 , 97–104. doi:10.1016/j.molstruc.2004.05.034
  • Scheiner, S. (1994). Bent hydrogen bonds and proton transfers. Accounts of Chemical Research , 27 , 402–408. doi:10.1021/ar00048a003
  • Shaik, S. , Mandal, D. , & Ramanan, R. (2016). Oriented electric fields as future smart reagents in chemistry. Nature Chemistry , 8 , 1091–1098. doi:10.1038/nchem.2651
  • Shi, Y. , Jiang, W. , Zhang, Z. , & Wang, Z. (2017). Cooperative vibrational properties of hydrogen bonds in Watson-Crick DNA base pairs. New Journal of Chemistry , 41 , 12104–12109. doi:10.1039/C7NJ03088F
  • Smedarchina, Z. , Siebrand, W. , & Fernández-Ramos, A. (2018). Entanglement and co-tunneling of two equivalent protons in hydrogen bond pairs. Journal of Chemical Physics , 148 , 102307–1–102307-15. doi:10.1063/1.5000681
  • Sowlati-Hashjin, Sh ., & Matta, Ch. F . (2013). The chemical bond in external electric fields: Energies, geometries, and vibrational Stark shifts of diatomic molecules. Journal of Chemical Physics , 139 , 144101–1–144101-14. doi:10.1063/1.4820487
  • Strazewski, P. , & Tamm, C. (1990). Replication experiments with nucleotide base analogues. Angewandte Chemie International Edition , 29 , 36–57. doi:10.1002/anie.199000361
  • Tolosa, S. , Sansón, J. A. , & Hidalgo, A. (2017). Theoretical thermodynamic study of the adenine–thymine tautomeric equilibrium: Electronic structure calculations and steered molecular dynamic simulations. International Journal of Quantum Chemistry , 117 , e25429. doi:10.1002/qua.25429
  • Tolosa, S. , Sansón, J. A. , & Hidalgo, A. (2018). Mechanisms for guanine–cytosine tautomeric equilibrium in solution via steered molecular dynamic simulations. Journal of Molecular Liquids , 251 , 308–316. doi:10.1016/j.molliq.2017.12.091
  • Toro-Labbé, A. , Gutiérrez-Oliva, S. , Murray, J. S. , & Politzer, P. (2009). The reaction force and the transition region of a reaction. Journal of Molecular Modeling , 15 , 707–710. doi:10.1007/s00894-008-0431-8
  • Toro-Labbé, A. , Gutierrez-Oliva, S. , Concha, M. C. , Murray, J. S. , & Politzer, P. (2004). Analysis of two intramolecular proton transfer processes in terms of the reaction force. Journal of Chemical Physics , 121 , 4570–4576. doi:10.1063/1.1777216
  • Wang, W. , Hellinga, H. W. , & Beese, L. S. (2011). Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proceeding of the National Academy of Sciences of USA , 108 , 17644–17648. doi:10.1073/pnas.1114496108
  • Ward, D. C. , Reich, E. , & Stryer, L. (1969). Fluorescence studies of nucleotides and polynucleotides: I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. Journal of Biological Chemistry , 244 , 1228–1237. Retrieved from http://www.jbc.org/content/244/5/1228.abstract
  • Yang, F. , Wu, R.-Z. , Yan, C.-X. , Yang, X. , Zhou, D.-G. , & Zhou, P.-P. (2017). Quantitative relationships between bond lengths, stretching vibrational frequencies, bond force constants, and bond orders in the hydrogen-bonded complexes involving hydrogen halides. Structural Chemistry , 29 , 513–521. doi:10.1007/s11224-017-1048-2
  • Yepes, D. , Murray, J. S. , Politzer, P. , & Jaque, P. (2012). The reaction force constant: An indicator of the synchronicity in double proton transfer reactions. Physical Chemistry Chemical Physics , 14 , 11125–11134. doi:10.1039/c2cp41064 h
  • Yepes, D. , Murray, J. S. , Santos, J. C. , Toro-Labbé, A. , Politzer, P. , & Jaque, P. (2013a). Fine structure in the transition region: Reaction force analyses of water-assisted proton transfers. Journal of Molecular Modeling , 19 , 2689–2697. doi:10.1007/s00894-012-1475-3
  • Yepes, D. , Murray, J. S. , Santos, J. C. , Toro-Labbé, A. , Politzer, P. , & Jaque, P. (2013b). Fine structure in the transition region: Reaction force analyses of water-assisted proton transfers. Journal of Molecular Modeling , 19 , 2689–2697. doi:10.1007/s00894-012-1475-3
  • Zhang, G. , & Xie, S. (2016). External electric field promotes proton transfer in the radical cation of adenine–thymine. Modern Physics Letters B , 30 , 1650276. doi:10.1142/S0217984916502766

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.