522
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Structural insights into pharmacophore-assisted in silico identification of protein–protein interaction inhibitors for inhibition of human toll-like receptor 4 – myeloid differentiation factor-2 (hTLR4−MD-2) complex

ORCID Icon & ORCID Icon
Pages 1968-1991 | Received 20 Jan 2018, Accepted 22 Apr 2018, Published online: 29 May 2018

References

  • Agrawal, R., Jain, P., Dikshit, S., Bahare, R., & Ganguly, S. (2013). Ligand-based pharmacophore detection, screening of potential pharmacophore and docking studies, to get effective glycogen synthase kinase inhibitors. Medicinal Chemistry Research, 22(11), 5504–5535. doi:10.1007/s00044-013-0547-y
  • Awasthi, S. (2014). Toll-like receptor-4 modulation for cancer immunotherapy. Frontiers in Immunology, 5. doi:10.3389/fimmu.2014.00328
  • Backman, T. W., Cao, Y., & Girke, T. (2011). ChemMine tools: An online service for analyzing and clustering small molecules. Nucleic Acids Research, 39(Web Server issue), W486–W491. doi: 10.1093/nar/gkr320
  • Barochia, A., Solomon, S., Cui, X., Natanson, C., & Eichacker, P. Q. (2011). Eritoran tetrasodium (E5564) treatment for sepsis: Review of preclinical and clinical studies. Expert Opinion on Drug Metabolism & Toxicology, 7(4), 479–494. doi:10.1517/17425255.2011.558190
  • Berman, H. M., Henrick, K., Nakamura, H., Markley, J., Bourne, P. E., & Westbrook, J. (2007). Realism about PDB. Nature Biotechnology, 25(8), 845–846; author reply 846. doi: 10.1038/nbt0807-845
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.10.1093/nar/28.1.235
  • Bevan, D. E., Martinko, A. J., Loram, L. C., Stahl, J. A., Taylor, F. R., Joshee, S., … Yin, H. (2010). Selection, preparation, and evaluation of small-molecule inhibitors of toll-like receptor 4. ACS Medicinal Chemistry Letters, 1(5), 194–198. doi:10.1021/ml100041f
  • Botos, I., Segal, D. M., & Davies, D. R. (2011). The structural biology of toll-like receptors. Structure, 19(4), 447–459. doi:10.1016/j.str.2011.02.004
  • Bucur, O., Gaidos, G., Yatawara, A., Pennarun, B., Rupasinghe, C., Roux, J., … Khosravi-Far, R. (2015). A novel caspase 8 selective small molecule potentiates TRAIL-induced cell death. Scientific Reports, 5, 817. doi:10.1038/srep09893
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., … Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. doi:10.1021/ci300367a
  • Christ, F., Voet, A., Marchand, A., Nicolet, S., Desimmie, B. A., Marchand, D., … Debyser, Z. (2010). Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nature Chemical Biology, 6(6), 442–448. doi:10.1038/nchembio.370
  • Cukuroglu, E., Gursoy, A., & Keskin, O. (2012). HotRegion: A database of predicted hot spot clusters. Nucleic Acids Research, 40(Database issue), D829–D833. doi: 10.1093/nar/gkr929
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Domling, A. (2008). Small molecular weight protein-protein interaction antagonists: An insurmountable challenge? Current Opinion in Chemical Biology, 12(3), 281–291. doi:10.1016/j.cbpa.2008.04.603
  • Erridge, C. (2010). Endogenous ligands of TLR2 and TLR4: Agonists or assistants? Journal of Leukocyte Biology, 87(6), 989–999. doi:10.1189/jlb.1209775
  • Fahrrolfes, R., Bietz, S., Flachsenberg, F., Meyder, A., Nittinger, E., Otto, T., … Rarey, M. (2017). ProteinsPlus: A web portal for structure analysis of macromolecules. Nucleic Acids Research. doi:10.1093/nar/gkx333
  • Fan, S. H., Wang, Y. Y., Lu, J., Zheng, Y. L., Wu, D. M., Li, M. Q., … Shan, Q. (2014). Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS One, 9(2), e89961. doi:10.1371/journal.pone.0089961
  • Fort, M. M., Mozaffarian, A., Stover, A. G., Correia Jda, S., Johnson, D. A., Crane, R. T., … Hershberg, R. M. (2005). A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. The Journal of Immunology, 174(10), 6416–6423.10.4049/jimmunol.174.10.6416
  • Gay, N. J., & Gangloff, M. (2007). Structure and function of toll receptors and their ligands. Annual Review of Biochemistry, 76, 141–165. doi:10.1146/annurev.biochem.76.060305.151318
  • Gay, N. J., Symmons, M. F., Gangloff, M., & Bryant, C. E. (2014). Assembly and localization of Toll-like receptor signalling complexes. Nature Reviews Immunology, 14(8), 546–558. doi:10.1038/nri3713
  • Gurung, A. B., Bhattacharjee, A., & Ali, M. A. (2016). Exploring the physicochemical profile and the binding patterns of selected novel anticancer Himalayan plant derived active compounds with macromolecular targets. Informatics in Medicine Unlocked, 5, 1–14. doi:10.1016/j.imu.2016.09.004
  • Hamon, V., Bourgeas, R., Ducrot, P., Theret, I., Xuereb, L., Basse, M. J., … Roche, P. (2014). 2P2I HUNTER: A tool for filtering orthosteric protein-protein interaction modulators via a dedicated support vector machine. Journal of The Royal Society Interface, 11(90), 20130860. doi:10.1098/rsif.2013.0860
  • Hamon, V., Brunel, J. M., Combes, S., Basse, M. J., Roche, P., & Morelli, X. (2013). 2P2Ichem: Focused chemical libraries dedicated to orthosteric modulation of protein-protein interactions. MedChemComm, 4(5), 797–809. doi:10.1039/C3MD00018D
  • Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 16, 213. doi:10.1186/s12859-015-0611-3
  • Huggins, C., Pearce, S., Peri, F., Neumann, F., Cockerill, G., & Pirianov, G. (2015). A novel small molecule TLR4 antagonist (IAXO-102) negatively regulates non-hematopoietic toll like receptor 4 signalling and inhibits aortic aneurysms development. Atherosclerosis, 242(2), 563–570. doi:10.1016/j.atherosclerosis.2015.08.010
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38, 27–3810.1016/0263-7855(96)00018-5
  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757–1768. doi:10.1021/ci3001277
  • Janeway, Jr., C. A., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216. doi:10.1146/annurev.immunol.20.083001.084359
  • Johnson, D. K., & Karanicolas, J. (2016). Ultra-high-throughput structure-based virtual screening for small-molecule inhibitors of protein-protein interactions. Journal of Chemical Information and Modeling, 56(2), 399–411. doi:10.1021/acs.jcim.5b00572
  • Kaserer, T., Beck, K. R., Akram, M., Odermatt, A., & Schuster, D. (2015). Pharmacophore models and pharmacophore-based virtual screening: Concepts and applications exemplified on hydroxysteroid dehydrogenases. Molecules, 20(12), 22799–22832. doi:10.3390/molecules201219880
  • Kawai, T., & Akira, S. (2007). Signaling to NF-kappaB by toll-like receptors. Trends in Molecular Medicine, 13(11), 460–469. doi:10.1016/j.molmed.2007.09.002
  • Kim, K. H., Kim, N. D., & Seong, B. L. (2010). Pharmacophore-based virtual screening: A review of recent applications. Expert Opinion on Drug Discovery, 5(3), 205–222. doi:10.1517/17460441003592072
  • Kim, S. Y., Koo, J. E., Seo, Y. J., Tyagi, N., Jeong, E., Choi, J., … Lee, J. Y. (2013). Suppression of Toll-like receptor 4 activation by caffeic acid phenethyl ester is mediated by interference of LPS binding to MD2. British Journal of Pharmacology, 168(8), 1933–1945. doi:10.1111/bph.12091
  • Kim, H. M., Park, B. S., Kim, J. I., Kim, S. E., Lee, J., Oh, S. C., … Lee, J. O. (2007). Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran. Cell, 130(5), 906–917. doi:10.1016/j.cell.2007.08.002
  • Koes, D. R., & Camacho, C. J. (2012a). PocketQuery: Protein-protein interaction inhibitor starting points from protein-protein interaction structure. Nucleic Acids Research, 40(Web Server issue), W387–W392. doi: 10.1093/nar/gks336
  • Koes, D. R., & Camacho, C. J. (2012b). ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Research, 40(Web Server issue), W409–W414. doi: 10.1093/nar/gks378
  • Kozakov, D., Grove, L. E., Hall, D. R., Bohnuud, T., Mottarella, S. E., Luo, L., … Vajda, S. (2015). The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols, 10(5), 733–755. doi:10.1038/nprot.2015.043
  • Kruger, D. M., Ignacio Garzon, J., Chacon, P., & Gohlke, H. (2014). DrugScorePPI knowledge-based potentials used as scoring and objective function in protein-protein docking. PLoS One, 9(2), e89466. doi:10.1371/journal.pone.0089466
  • Kruger, D. M., & Gohlke, H. (2010). DrugScorePPI webserver: Fast and accurate in silico alanine scanning for scoring protein-protein interactions. Nucleic Acids Research, 38(Web Server issue), W480–W486. doi: 10.1093/nar/gkq471
  • Lagorce, D., Sperandio, O., Baell, J. B., Miteva, M. A., & Villoutreix, B. O. (2015). FAF-Drugs3: A web server for compound property calculation and chemical library design. Nucleic Acids Research, 43(W1), W200–W207. doi:10.1093/nar/gkv353
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. doi:10.1021/ci200227u
  • Leon, C. G., Tory, R., Jia, J., Sivak, O., & Wasan, K. M. (2008). Discovery and development of toll-like receptor 4 (TLR4) antagonists: A new paradigm for treating sepsis and other diseases. Pharmaceutical Research, 25(8), 1751–1761. doi:10.1007/s11095-008-9571-x
  • Lin, M., Yiu, W. H., Li, R. X., Wu, H. J., Wong, D. W., Chan, L. Y., … Tang, S. C. (2013). The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy. Kidney International, 83(5), 887–900. doi:10.1038/ki.2013.11
  • Liu, X., Vogt, I., Haque, T., & Campillos, M. (2013). HitPick: A web server for hit identification and target prediction of chemical screenings. Bioinformatics, 29(15), 1910–1912. doi:10.1093/bioinformatics/btt303
  • Liu, S., Wu, S., & Jiang, S. (2007). HIV entry inhibitors targeting gp41: From polypeptides to small-molecule compounds. Current Pharmaceutical Design, 13(2), 143–162.10.2174/138161207779313722
  • Mahapatra, M. K., Bera, K., Singh, D. V., Kumar, R., & Kumar, M. (2018). In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors. Journal of Biomolecular Structure and Dynamics, 36(5), 1195–1211. doi:10.1080/07391102.2017.1317026
  • Matsunaga, N., Tsuchimori, N., Matsumoto, T., & Ii, M. (2011). TAK-242 (Resatorvid), a small-molecule inhibitor of toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Molecular Pharmacology, 79(1), 34–41. doi:10.1124/mol.110.068064
  • Matzinger, P. (1994). Tolerance, danger, and the extended family. Annual Review of Immunology, 12, 991–1045. doi:10.1146/annurev.iy.12.040194.005015
  • Mayne, C. G., Saam, J., Schulten, K., Tajkhorshid, E., & Gumbart, J. C. (2013). Rapid parameterization of small molecules using the force field toolkit. Journal of Computational Chemistry, 34(32), 2757–2770. doi:10.1002/jcc.23422
  • Medzhitov, R. (2007). Recognition of microorganisms and activation of the immune response. Nature, 449(7164), 819–826. doi:10.1038/nature06246
  • Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2007). Hot spots-A review of the protein-protein interface determinant amino-acid residues. Proteins, 68(4), 803–812. doi:10.1002/prot.21396
  • Mullarkey, M., Rose, J. R., Bristol, J., Kawata, T., Kimura, A., Kobayashi, S., … Rossignol, D. P. (2003). Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist. The Journal of Pharmacology and Experimental Therapeutics, 304(3), 1093–1102. doi:10.1124/jpet.102.044487
  • Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., … Miyake, K. (2002). Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nature Immunology, 3(7), 667–672. doi:10.1038/ni809
  • Neal, M. D., Jia, H., Eyer, B., Good, M., Guerriero, C. J., Sodhi, C. P., … Hackam, D. J. (2013). Discovery and validation of a new class of small molecule toll-like receptor 4 (TLR4) inhibitors. PLoS One, 8(6), e65779. doi:10.1371/journal.pone.0065779
  • Nickel, J., Gohlke, B. O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., … Preissner, R. (2014). SuperPred: Update on drug classification and target prediction. Nucleic Acids Research, 42( Web Server issue), W26–W31. doi: 10.1093/nar/gku477
  • Oblak, A., & Jerala, R. (2011). Toll-like receptor 4 activation in cancer progression and therapy. Clinical & Developmental Immunology, 2011, 609579. doi:10.1155/2011/609579
  • Ohnishi, T., Muroi, M., & Tanamoto, K. (2003). MD-2 is necessary for the toll-like receptor 4 protein to undergo glycosylation essential for its translocation to the cell surface. Clinical and Diagnostic Laboratory Immunology, 10(3), 405–410.
  • O’Neill, L. A., Bryant, C. E., & Doyle, S. L. (2009). Therapeutic targeting of toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacological Reviews, 61(2), 177–197. doi:10.1124/pr.109.001073
  • Ooboshi, H., & Shichita, T. (2016). DAMPs (damage-associated molecular patterns) and inflammation. Nihon Rinsho, 74(4), 573–578.
  • Opal, S. M., Laterre, P. F., Francois, B., LaRosa, S. P., Angus, D. C., Mira, J. P., … Group, A. S. (2013). Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial. JAMA, 309(11), 1154–1162. doi:10.1001/jama.2013.2194
  • Park, B. S., & Lee, J. O. (2013). Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental & Molecular Medicine, 45, e66. doi:10.1038/emm.2013.97
  • Park, B. S., Song, D. H., Kim, H. M., Choi, B. S., Lee, H., & Lee, J. O. (2009a). The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature, 458(7242), 1191–1195. doi:10.1038/nature07830
  • Park, B. S., Song, D. H., Kim, H. M., Choi, B. S., Lee, H., & Lee, J. O. (2009b). The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature, 458, 1191–1195.10.1038/nature07830
  • Peri, F., & Calabrese, V. (2014). Toll-like receptor 4 (TLR4) modulation by synthetic and natural compounds: An update. Journal of Medicinal Chemistry, 57(9), 3612–3622. doi:10.1021/jm401006s
  • Peri, F., & Piazza, M. (2012). Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnology Advances, 30(1), 251–260. doi:10.1016/j.biotechadv.2011.05.014
  • Peri, F., Piazza, M., Calabrese, V., & Cighetti, R. (2011). Modulation of Lipopolysaccharide Signalling Through TLR4 Agonists and Antagonists. In A. Y. Knirel & A. M. Valvano (Eds.), Bacterial lipopolysaccharides: Structure, chemical synthesis, biogenesis and interaction with host cells (pp. 389–416). Vienna: Springer Vienna.10.1007/978-3-7091-0733-1
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. doi:10.1002/jcc.20289
  • Piazza, M., Yu, L., Teghanemt, A., Gioannini, T., Weiss, J., & Peri, F. (2009). Evidence of a specific interaction between new synthetic antisepsis agents and CD14. Biochemistry, 48(51), 12337–12344. doi:10.1021/bi901601b
  • Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., … Beutler, B. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science, 282(5396), 2085–2088.10.1126/science.282.5396.2085
  • Popowicz, G. M., Domling, A., & Holak, T. A. (2011). The structure-based design of Mdm2/Mdmx-p53 inhibitors gets serious. Angewandte Chemie International Edition, 50(12), 2680–2688. doi:10.1002/anie.201003863
  • Porollo, A., & Meller, J. (2007). Prediction-based fingerprints of protein-protein interactions. Proteins, 66(3), 630–645. doi:10.1002/prot.21248
  • Qureshi, S. T., Lariviere, L., Leveque, G., Clermont, S., Moore, K. J., Gros, P., & Malo, D. (1999). Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). The Journal of Experimental Medicine, 189(4), 615–625.10.1084/jem.189.4.615
  • Rajamani, D., Thiel, S., Vajda, S., & Camacho, C. J. (2004). Anchor residues in protein-protein interactions. Proceedings of the National Academy of Sciences, 101(31), 11287–11292. doi:10.1073/pnas.0401942101
  • Rajamanikandan, S., Jeyakanthan, J., & Srinivasan, P. (2017). Binding mode exploration of LuxR-thiazolidinedione analogues, e-pharmacophore-based virtual screening in the designing of LuxR inhibitors and its biological evaluation. Journal of Biomolecular Structure & Dynamics, 35(4), 897–916. doi:10.1080/07391102.2016.1166455
  • Reulecke, I., Lange, G., Albrecht, J., Klein, R., & Rarey, M. (2008). Towards an integrated description of hydrogen bonding and dehydration: Decreasing false positives in virtual screening with the HYDE scoring function. ChemMedChem, 3(6), 885–897. doi:10.1002/cmdc.200700319
  • Rice, T. W., Wheeler, A. P., Bernard, G. R., Vincent, J. L., Angus, D. C., Aikawa, N., … Cohen, J. (2010). A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Critical Care Medicine, 38(8), 1685–1694. doi:10.1097/CCM.0b013e3181e7c5c9
  • Rossignol, D. P., & Lynn, M. (2005). TLR4 antagonists for endotoxemia and beyond. Current Opinion in Investigational Drugs, 6(5), 496–502.
  • Sable, R., & Jois, S. (2015). Surfing the protein-protein interaction surface using docking methods: Application to the design of PPI inhibitors. Molecules, 20(6), 11569–11603. doi:10.3390/molecules200611569
  • Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). Datawarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. doi:10.1021/ci500588j
  • Schmidt, F., Matter, H., Hessler, G., & Czich, A. (2014). Predictive in silico off-target profiling in drug discovery. Future Medicinal Chemistry, 6(3), 295–317. doi:10.4155/fmc.13.202
  • Schneider, N., Lange, G., Hindle, S., Klein, R., & Rarey, M. (2013). A consistent description of HYdrogen bond and DEhydration energies in protein-ligand complexes: Methods behind the HYDE scoring function. Journal of Computer-Aided Molecular Design, 27(1), 15–29. doi:10.1007/s10822-012-9626-2
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., … Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. doi:10.1101/gr.1239303
  • Sheweita, S. A. (2000). Drug-metabolizing enzymes mechanisms and functions. Current Drug Metabolism, 1(2), 107–132.10.2174/1389200003339117
  • Shi, S., & Li, Y. (2014). Interplay of drug-metabolizing enzymes and transporters in drug absorption and disposition. Current Drug Metabolism, 15(10), 915–941.
  • Skariyachan, S., Manjunath, M., & Bachappanavar, N. (2018). Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii - insights from molecular docking, molecular dynamic simulations and in vitro assays. Journal of Biomolecular Structure and Dynamics, 1–24. doi: 10.1080/07391102.2018.1451387
  • Slater, P. G., Gutierrez-Maldonado, S. E., Gysling, K., & Lagos, C. F. (2018). Molecular modeling of structures and interaction of human corticotropin-releasing factor (CRF) binding protein and CRF type-2 receptor. Frontiers in Endocrinology, 9, 525. doi:10.3389/fendo.2018.00043
  • Sobolev, V., Eyal, E., Gerzon, S., Potapov, V., Babor, M., Prilusky, J., & Edelman, M. (2005). SPACE: A suite of tools for protein structure prediction and analysis based on complementarity and environment. Nucleic Acids Research, 33(Web Server issue), W39–W43. doi: 10.1093/nar/gki398
  • Song, F., Wei, C., Zhou, L., Qin, A., Yang, M., Tickner, J., … Xu, J. (2018). Luteoloside prevents lipopolysaccharide-induced osteolysis and suppresses RANKL-induced osteoclastogenesis through attenuating RANKL signaling cascades. Journal of Cellular Physiology, 233(2), 1723–1735. doi:10.1002/jcp.26084
  • Sperandio, O. (2012). Editorial: Toward the design of drugs on protein-protein interactions. Current Pharmaceutical Design, 18(30), 4585.10.2174/138161212802651661
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics, 22(14), 1710–1716. doi:10.1093/bioinformatics/btl150
  • Trejo-Soto, P. J., Hernandez-Campos, A., Romo-Mancillas, A., Medina-Franco, J. L., & Castillo, R. (2018). In search of AKT kinase inhibitors as anticancer agents: Structure-based design, docking, and molecular dynamics studies of 2,4,6-trisubstituted pyridines. Journal of Biomolecular Structure and Dynamics, 36(2), 423–442. doi:10.1080/07391102.2017.1285724
  • Tuncbag, N., Keskin, O., & Gursoy, A. (2010). HotPoint: Hot spot prediction server for protein interfaces. Nucleic Acids Research, 38(Web Server issue), W402–W406. doi: 10.1093/nar/gkq323
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., … Mackerell, A. D., Jr. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. doi:10.1002/jcc.21367
  • Vanommeslaeghe, K., & MacKerell, A. D., Jr. (2012). Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing. Journal of Chemical Information and Modeling, 52(12), 3144–3154. doi:10.1021/ci300363c
  • Vanommeslaeghe, K., Raman, E. P., & MacKerell, A. D., Jr. (2012). Automation of the CHARMM general force field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. Journal of Chemical Information and Modeling, 52(12), 3155–3168. doi:10.1021/ci3003649
  • Villoutreix, B. O., Kuenemann, M. A., Poyet, J. L., Bruzzoni-Giovanelli, H., Labbe, C., Lagorce, D., … Miteva, M. A. (2014). Drug-like protein-protein interaction modulators: Challenges and opportunities for drug discovery and chemical biology. Molecular Informatics, 33(6–7), 414–437. doi:10.1002/minf.201400040
  • Voet, A., Banwell, E. F., Sahu, K. K., Heddle, J. G., & Zhang, K. Y. (2013). Protein interface pharmacophore mapping tools for small molecule protein: Protein interaction inhibitor discovery. Current Topics in Medicinal Chemistry, 13(9), 989–1001.10.2174/1568026611313090003
  • Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F., & Rarey, M. (2012). Combining global and local measures for structure-based druggability predictions. Journal of Chemical Information and Modeling, 52(2), 360–372. doi:10.1021/ci200454v
  • Wang, X., Smith, C., & Yin, H. (2013). Targeting Toll-like receptors with small molecule agents. Chemical Society Reviews, 42(12), 4859–4866. doi:10.1039/c3cs60039d
  • Wells, J. A., & McClendon, C. L. (2007). Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature, 450(7172), 1001–1009. doi:10.1038/nature06526
  • Welsch, M. E., Snyder, S. A., & Stockwell, B. R. (2010). Privileged scaffolds for library design and drug discovery. Current Opinion in Chemical Biology, 14(3), 347–361. doi:10.1016/j.cbpa.2010.02.018
  • Whitty, A., & Kumaravel, G. (2006). Between a rock and a hard place? Nature Chemical Biology, 2(3), 112–118.10.1038/nchembio0306-112
  • Xagorari, A., Papapetropoulos, A., Mauromatis, A., Economou, M., Fotsis, T., & Roussos, C. (2001). Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. Journal of Pharmacology and Experimental Therapeutics, 296(1), 181–187.
  • Xagorari, A., Roussos, C., & Papapetropoulos, A. (2002). Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin. British Journal of Pharmacology, 136(7), 1058–1064. doi:10.1038/sj.bjp.0704803
  • Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., … Akira, S. (2003). Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 301(5633), 640–643. doi:10.1126/science.1087262
  • Yusof, I., Shah, F., Hashimoto, T., Segall, M. D., & Greene, N. (2014). Finding the rules for successful drug optimisation. Drug Discovery Today, 19(5), 680–687. doi:10.1016/j.drudis.2014.01.005
  • Zhu, X., & Mitchell, J. C. (2011). KFC2: A knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins, 79(9), 2671–2683. doi:10.1002/prot.23094

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.