452
Views
52
CrossRef citations to date
0
Altmetric
Research Article

Extrapolation of phenolic compounds as multi-target agents against cancer and inflammation

ORCID Icon, , , , &
Pages 2355-2369 | Received 24 Mar 2018, Accepted 15 May 2018, Published online: 10 Dec 2018

References

  • Aggarwal, B.B., Bhardwaj, A., Aggarwal, R.S., Seeram, N.P., Shishodia, S., & Takada, Y. (2004). Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Research, 24(5A), 2783–2840.
  • Ahuja, I., Kissen, R., & Bones, A.M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17(2), 73–90.
  • Anekonda, T.S. (2006). Resveratrol-a boon for treating Alzheimer’s disease?. Brain Research Reviews, 52(2), 316–326.
  • Baur, J.A., & Sinclair, D.A. (2006). Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews. Drug Discovery, 5(6), 493–506.
  • Bavaresco, L., Fregoni, M., Trevisan, M., Mattivi, F., Vrhovsek, U., & Falchetti, R. (2002). The occurrence of the stilbene piceatannol in grapes. Vitis, 41, 133–136.
  • Becke, A.D. (1993). Density functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics., 98(7), 5648–5652.
  • Benitez, D.A., Hermoso, M.A., Pozo‐Guisado, E., Fernández‐Salguero, P.M., & Castellón, E.A. (2009). Regulation of cell survival by resveratrol involves inhibition of NFκB-regulated gene expression in prostate cancer cells. The Prostate, 69(10), 1045–1054.
  • Bhat, K.P.L., Kosmeder, J.W., 2nd., & Pezzuto, J.M. (2001). Biological effects of resveratrol. Antioxid Redox Signal, 3, 1041–1064.
  • Bhatt, J.K., Thomas, S., & Nanjan, M.J. (2012). Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutrition Research (New York, N.Y.), 32(7), 537–541.
  • Bhattacharya, A., Sood, P., & Citovsky, V. (2010). The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Molecular Plant Pathology, 11(5), 705–719.
  • Bishayee, A., Barnes, K.F., Bhatia, D., Darvesh, A.S., & Carroll, R.T. (2010). Resveratrol suppresses oxidative stress and inflammatory response in diethylnitrosamine-initiated rat hepatocarcinogenesis. Cancer Prevention Research (Philadelphia, Pa.), 3(6), 753–763.
  • Bodini, S.F., Manfredini, S., Epp, M., Valentini, S., & Santori, F. (2009). Quorum sensing inhibition activity of garlic extract and p-coumaric acid. Letters in Applied Microbiology, 49(5), 551–555.
  • Brovarets’, O.O., & Hovorun, D.M. (2010a). Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine. The Ukrainian Biochemical Journal, 82, 55–60.
  • Brovarets’, O.O., & Hovorun, D.M. (2010b). Quantum-chemical investigation of the elementary molecular mechanisms of pyrimidine-purine transversions. The Ukrainian Biochemical Journal 82:57–67.
  • Brovarets’, O.O., & Hovorun, D.M. (2014). Does the G·G* synDNA mismatch containing canonical and rare tautomers of the guanine tautomerise through the DPT? A QM/QTAIM microstructural studyn. Molecular Physics., 112(23), 3033–3046.
  • Brovarets’, O.O., & Hovorun, D.M. (2014). How does the long G·G* Watson-Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation. Physical Chemistry Chemical Physics : Pccp, 16(30), 15886–15899.
  • Brovarets’, O.O., & Hovorun, D.M. (2015). How many tautomerization pathways connect Watson–Crick-like G*·T DNA base mispair and wobble mismatches?. Journal of Biomolecular Structure and Dynamics, 33(11), 2297–2315.
  • Brovarets’, O.O., & Hovorun, D.M. (2015). Wobble↔Watson-Crick tautomeric transitions in the homo-purine DNA mismatches: a key to the intimate mechanisms of the spontaneous transversions. Journal of Biomolecular Structure and Dynamics, 33(12), 2710–2715.
  • Brovarets’, O.O., & Sánchez, H.P. (2017). Whether 2-aminopurine induces incorporation errors at the DNA replication? A quantum-mechanical answer on the actual biological issue. Journal of Biomolecular Structure and Dynamics, 35(15), 3398–3411.
  • Brovarets’, O.O., Yurenko, Y.P., & Hovorun, D.M. (2014). Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study . Journal of Biomolecular Structure and Dynamics, 32(6), 993–1022.
  • Brovarets’, O.O., Yurenko, Y.P., & Hovorun, D.M. (2015). The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation. Journal of Biomolecular Structure and Dynamics, 33(8), 1624–1652.
  • Brovarets’, O.O., Zhurakivsky, R.O., & Hovorun, D.M. (2013). The physico-chemical mechanism of the tautomerisation through the DPT of the long Hyp∗·Hyp Watson–Crick base pair containing rare tautomer: A QM and QTAIM detailed look. Chemical Physics Letters, 578, 126–132.
  • Brovarets’, O.O., Zhurakivsky, R.O., & Hovorun, D.M. (2014). Structural, energetic and tautomeric properties of the T·T∗/T∗·T DNA mismatch involving mutagenic tautomer of thymine: A QM and QTAIM insight. Chemical Physics Letters, 592, 247–255.
  • Brovarets’, O.O., Zhurakivsky, R.O., & Hovorun, D.M. (2015). DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM Arguments. Journal of Biomolecular Structure &Amp; Dynamics, 33(3), 674–689.
  • Carter, L.G., D’Orazio, J.A., & Pearson, K.J. (2014). Resveratrol and cancer: focus on in vivo evidence. Endocrine-Related Cancer, 21(3), R209–R225.
  • Cho, H.S., Mason, K., Ramyar, K.X., Stanley, A.M., Gabelli, S.., Denney, D.W., Jr., & Leahy, D.J. (2003). Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature, 421(6924), 756–760.
  • Cho, M.H., & Lee, S.W. (2015). Phenolic phytoalexins in rice: Biological functions and biosynthesis. International Journal of Molecular Sciences, 16(12), 29120–29133.
  • Chung, T.D.Y., Terry, D.B., & Smith, L.H. (2015). In vitro and in vivo assessment of ADME and PK properties during lead selection and lead optimization–guidelines, benchmarks and rules of thumb. Assay Guidance Manual, retrieved from https://www.ncbi.nlm.nih.gov/books/NBK326710/
  • Dai, J., & Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules (Basel, Switzerland), 15(10), 7313–7352.
  • Działo, M., Mierziak, J., Korzun, U., Preisner, M., Szopa, J., & Kulma, A. (2016). The potential of plant phenolics in prevention and therapy of skin disorders. International Journal of Molecular Sciences, 17(2), 160–201.
  • Frémont, L. (2000). Biological effects of resveratrol. Life Sciences, 66(8), 663–673.
  • Fresco, P., Borges, F., Diniz, C., & Marques, M.P. (2006). New insights on the anticancer properties of dietary polyphenols. Medicinal Research Reviews , 26(6), 747–766.
  • Frisch, M. J., Trucks, G. W. , Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G. et al., (2009). Gaussian 09, Revision A.1, Wallingford, CT.
  • Goel, N., & Kumar, N. (2018). A dual-functional luminescent Tb(III) metal–organic framework for the selective sensing of acetone and TNP in water. RSC Advances, 8(20), 10746–10755.
  • Gu, H., Li, K., Li, X., Yu, X., Wang, W., Ding, L., & Liu, L. (2016). Oral resveratrol prevents osteoarthritis progression in C57BL/6J mice fed a high-fat diet. Nutrients, 8(4), 233–248.
  • Hausenblas, H.A., Schoulda, J.A., & Smoliga, J.M. (2015). Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus-systematic review and meta-analysis. Molecular Nutrition and Food Research, 59(1), 147–159.
  • Jeandet, P. (2015). Phytoalexins: current progress and future prospects. Molecules, 20(2), 2770–2774.
  • Jeandet, P., Douillet-Breuil, A.C., Bessis, R., Debord, S., Sbaghi, M., & Adrian, M. (2002). Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. Journal of Agricultural and Food Chemistry, 50(10), 2731–2741.
  • Kakkar, S., & Bais, S. (2014). A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacology, 2014, 1–9.
  • Karimi, E., Oskoueian, E., Hendra, R., Oskoueian, A., & Jaafar, H.Z. (2012). Phenolic compounds characterization and biological activities of Citrus aurantium bloom. Molecules (Basel, Switzerland), 17(2), 1203–1218.
  • Kim, J.S. (2015). Production, separation and applications of phenolic-rich bio-oil-a review . Bioresource Technology, 178, 90–98.
  • Ko, Y.J., Kim, H.H., Kim, E.J., Katakura, Y., Lee, W.S., Kim, G.S., & Ryu, C.H. (2013). Piceatannol inhibits mast cell-mediated allergic inflammation. International Journal of Molecular Medicine, 31(4), 951–958.
  • Koopmans, T. (1934). About the allocation of wave functions and eigenvalues of the individual electrons one atom. Physica, 1, 104–113.
  • Krejsa, C.M., Horvath, D., Rogalski, S.L., Penzotti, J.E., Mao, B., Barbosa, F., & Migeon, J.C. (2003). Predicting ADME properties and side effects: the BioPrint approach. Current Opinion in Drug Discovery &Amp; Development, 6(4), 470–480.
  • Kumar, N., & Garg, A. (2014). Structural optimization and docking studies of anatoxin-a: A potent neurotoxin. African Journal of Biotechnology, 13(30), 3092–3100.
  • Kumar, N., Goel, N., Yadav, T.C., & Pruthi, V. (2017). Quantum chemical, ADMET and molecular docking studies of ferulic acid amide derivatives with a novel anti-cancer drug target. Medicinal Chemistry Research, 26(8), 1822–1834.
  • Kumar, N., Kumar, S., Abbat, S., Nikhil, K., Sondhi, S.M., Bharatam, P.V., … Pruthi, V. (2016). Ferulic acid amide derivatives as anticancer and antioxidant agents: synthesis, thermal, biological and computational studies. Medicinal Chemistry Research, 25(6), 1175–1192.
  • Kumar, N., & Pruthi, V. (2015). Structural elucidation and molecular docking of ferulic acid from Parthenium hysterophorus possessing COX-2 inhibition activity. 3 Biotech, 5(4), 541–551.
  • Kumar, N., Pruthi, V., & Goel, N. (2015). Structural, thermal and quantum chemical studies of p-coumaric and caffeic acids. Journal of Molecular Structure, 1085, 242–248.
  • Kumar, N., & Pruthi, V. (2014). Potential applications of ferulic acid from natural sources. Biotechnology Reports (Amsterdam, Netherlands), 4, 86–93.
  • Lende, A.B., Kshirsagar, A.D., Deshpande, A.D., Muley, M.M., Patil, R.R., Bafna, P.A., & Naik, S.R. (2011). Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice. Inflammopharmacology, 19(5), 255–263.
  • Lin, H.H., Chen, J.H., Chou, F.P., & Wang, C.J. (2011). Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/NF-κB pathway and MMP-2 production by targeting RhoB activation . British Journal of Pharmacology, 162(1), 237–254.
  • Lin, L.Z., Harnly, J., Zhang, R.W., Fan, X.E., & Chen, H.J. (2012). Quantitation of the hydroxycinnamic acid derivatives and the glycosides of flavonols and flavones by UV absorbance after identification by LC-MS. Journal of Agricultural and Food Chemistry, 60(2), 544–553.
  • Liu, Z., Wu, Z., Li, J., Marmalidou, A., Zhang, R., & Yu, M. (2017). Protective effect of resveratrol against light-induced retinal degeneration in aged SAMP8 mice. Oncotarget, 8(39), 65778–65788.
  • Mandal, S.M., Chakraborty, D., & Dey, S. (2010). Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signaling and Behavior, 5(4), 359–368.
  • Markus, M.A., & Morris, B.J. (2008). Resveratrol in prevention and treatment of common clinical conditions of aging. Clinical Interventions in Aging, 3(2), 331–339.
  • Naylor, A.J.D. (2009). Cellular effects of resveratrol in skeletal muscle. Life Sci, 84(19-20), 637–640.
  • Newmark, H. L. (1987). Plant phenolics as inhibitors of mutational and precarcinogenic events. Canadian Journal of Physiology and Pharmacology, 65(3), 461–466.
  • Newman, D.J., & Cragg, G.M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335.
  • Nguyen, C., Savouret, J.F., Widerak, M., Corvol, M.T., & Rannou, F. (2017). Resveratrol, potential therapeutic interest in joint disorders: A critical narrative review. Nut, 9(1), 45–56.
  • Nivelle, L., Hubert, J., Courot, E., Jeandet, P., Aziz, A., Nuzillard, J.M., … Tarpin, M. (2017). Anti-cancer activity of resveratrol and derivatives produced by grapevine cell suspensions in a 14 L stirred bioreactor. Molecules, 22(3), 474–487.
  • Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, L., & Delikanli, B. (2014). Phenolics in human health. International Journal of Chemical Engineering and Applications, 5(5), 393–396.
  • Piotrowska, H., Kucinska, M., & Murias, M. (2012). Biological activity of piceatannol: Leaving the shadow of resveratrol. Mutation Research, 750(1), 60–82.
  • Raj, U., Kumar, H., Gupta, S., & Varadwaj, P.K. (2016). Exploring dual inhibitors for STAT1 and STAT5 receptors utilizing virtual screening and dynamics simulation validation. Journal of Biomolecular Structure and Dynamics, 34(10), 2115–2129.
  • Reinisalo, M., Karlund, A., Koskela, A., Kaarniranta, K., & Karjalainen, R.O. (2015). Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxidative Medicine and Cellular Longevity, 2015, 1–24.
  • Rivière, C., Pawlus, A.D., & Mérillon, J.M. (2012). Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Natural Product Reports, 29(11), 1317–1333.
  • Satyanarayanajois, S., Villalba, S., Jianchao, L., & Lin, G.M. (2009). Design, synthesis, and docking studies of peptidomimetics based on HER2-herceptin binding site with potential antiproliferative activity against breast cancer cell lines. Chemical Biology and Drug Design, 74(3), 246–257.
  • Shen, B.A. (2015). A new golden age of natural products drug discovery. Cell, 163(6), 1297–1300.
  • Shen, T., Wang, X.N., & Lou, H.X. (2009). Natural stilbenes: an overview. Natural Product Reports, 26(7), 916–935.
  • Shorrock, C.J., & Rees, W.D. (1988). Overview of gastroduodenal mucosal protection. The American Journal of Medicine, 84(2A), 25–34.
  • Sirerol, J.A., Rodríguez, M.L., Mena, S., Asensi, M.A., Estrela, J.M., & Ortega, A.L. (2016). Role of natural stilbenes in the prevention of cancer. Oxidative Medicine and Cellular Longevity, 2016, 1.
  • Slamon, D.J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., … Norton, L. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344(11), 783–792.
  • Smith, W.L., Urade, Y., & Jakobsson, P.J. (2011). Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chemical Reviews, 111(10), 5821–5865.
  • Sobolev, V.S., Khan, S.I., Tabanca, N., Wedge, D.E., Manly, S.P., Cutler, S.J., … Gloer, J.B. (2011). Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic stilbenoids. Journal of Agricultural and Food Chemistry, 59(5), 1673–1682.
  • Sousa, S.F., Fernandes, P.A., & Ramos, M.J. (2006). Protein-ligand docking: current status and future challenges. Proteins, 65(1), 15–26.
  • Sytar, O., Hemmerich, I., Zivcak, M., Rauh, C., & Brestic, M. (2018). Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi Journal of Biological Sciences, 25(4), 631–641.
  • Tang, Y.L., & Chan, S.W. (2014). A review of the pharmacological effects of piceatannol on cardiovascular diseases. Phytotherapy Research : Ptr, 28(11), 1581–1588.
  • Trela, B.C., & Waterhouse, A.L. (1996). Resveratrol: isomeric molar absorptivities and stability. Journal of Agricultural and Food Chemistry, 44(5), 1253–1257.
  • Tsai, H.Y., Ho, C.T., & Chen, Y.K. (2017). Biological actions and molecular effects of resveratrol, pterostilbene, and 3’-hydroxypterostilbene. Journal of Food and Drug Analysis, 25(1), 134–147.
  • Turner, R.S., Thomas, R.G., Craft, S., Van Dyck, C.H., Mintzer, J., Reynolds, B.A., … Aisen, P.S. (2015). A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 85(16), 1383–1391.
  • Vinayagam, R., Jayachandran, M., & Xu, B. (2016). Antidiabetic effects of simple phenolic acids: A comprehensive review. Phytotherapy Research : Ptr, 30(2), 184–199.
  • Xing, M., Akowuah, G.A., Gautam, V., & Gaurav, A. (2017). Structure-based design of selective phosphodiesterase 4B inhibitors based on ginger phenolic compounds. Journal of Biomolecular Structure and Dynamics, 35(13), 2910–2924.
  • Xu, Y., Lee, J., Park, Y.D., Yang, J.M., Zheng, J., & Zhang, Q. (2018). Molecular dynamics simulation integrating the inhibition kinetics of hydroxysafflor yellow A on α-glucosidase. Journal of Biomolecular Structure and Dynamics, 36(4), 830–840.
  • Yarden, Y., & Sliwkowski, M.X. (2001). Untangling the ErbB signalling network. Nature Reviews. Molecular Cell Biology, 2(2), 127–137.
  • Yin, M.C., Lin, C.C., Wu, H.C., Tsao, S.M., & Hsu, C.K. (2009). Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: Potential mechanisms of action. Journal of Agricultural and Food Chemistry, 57(14), 6468–6473.
  • Yurenko, Y.P., Zhurakivsky, R.O., Samijlenko, S.P., Hovorun, D.M. (2011). Intramolecular CH…O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis. Journal of Biomolecular Structure and Dynamics, 29(1), 51–65.
  • Zhou, H., Wang, C., Deng, T., Tao, R., & Li, W. (2017). Novel urushiol derivatives as HDAC8 inhibitors: rational design, virtual screening, molecular docking and molecular dynamics studies. Journal of Biomolecular Structure and Dynamics 6:1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.