236
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Exploring potentially alternative non-canonical DNA duplex structures through simulation

ORCID Icon, ORCID Icon &
Pages 2201-2210 | Received 25 Apr 2018, Accepted 18 May 2018, Published online: 17 Nov 2018

References

  • Arnott, S., Campbell, P. J., & Chandrasekaran, R. (1976). Molecular conformations for DNA-DNA, RNA-RNA and DNA-RNA helices. In G. P. Fasman (Ed.), Handbook of biochemistry and molecular biology (3rd ed., pp. 411–422). Cleveland, OH: CRC Press.
  • Case, D. A., Darden, T. A., Cheatham 3rd, T. E., Simmerling, C. L., Wang, J., Duke, R. E., …, Kollman, P. A. (2014). AMBER14. San Francisco: University of California.
  • Cheatham 3rd, T. E., Cieplak, P., & Kollman, P. A. (1999). A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. Journal of Biomolecular Structure and Dynamics, 16, 845–862. doi:10.1080/07391102.1999.10508297
  • Crick, F. H. C., & Watson, J. D. (1954). The complementary structure of deoxyribonucleic acid. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 223, 80–96. doi:10.1098/rspa.1954.0101
  • Dans, P. D., Ivani, I., Hospital, A., Portella, G., González, C., & Orozco, M. (2017). How accurate are accurate force-fields for B-DNA? Nucleic Acids Research, 45, gkw1355. doi:10.1093/nar/gkw1355
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577. doi:10.1063/1.470117
  • Galindo-Murillo, R., Bergonzo, C., & Cheatham 3rd, T. E. (2013). Molecular modeling of nucleic acid structure. Current Protocols Nucleic Acid Chemistry, 54, 7.5.1–7.5.13.
  • Galindo-Murillo, R., Robertson, J. C., Zgarbová, M., Šponer, J., Jurečka, P., & Cheatham 3rd, T. E. (2016). Assessing the current state of amber force field modifications for DNA. Journal of Chemical Theory and Computation, 12, 4114–4127. doi:10.1021/acs.jctc.6b00186
  • Galindo-Murillo, R., Roe, D. R., & Cheatham 3rd, T. E. (2014a). Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC). Biochimica et Biophysica Acta, 1850, 1041–1058. doi:10.1016/j.bbagen.2014.09.007
  • Galindo-Murillo, R., Roe, D. R., & Cheatham 3rd, T. E. (2014b). On the absence of intra-helical DNA dynamics on the μs to ms timescale. Nature Communications, 5, 5152. doi:10.1038/ncomms6152
  • Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8, 1542–1555. doi:10.1021/ct200909j
  • Gupta, G., Bansal, M., & Sasisekharan, V. (1980). Polymorphism and conformational flexibility of DNA: Right and left handed duplexes. International Journal of Biological Macromolecules, 2, 368–380. doi:10.1016/0141-8130(80)90019-7
  • Hopkins, R. C. (1981). Deoxyribonucleic acid structure: A new model. Science, 211, 289–291. doi:10.1126/science.7444467
  • Hopkins, R. C. (1983). Alternative description of the transition between B-DNA and Z-DNA. Cold Spring Harbor Symposia on Quantitative Biology, 47, 129–131. doi:10.1101/SQB.1983.047.01.017
  • Hopkins, R. C. (1984a). A molecular model relating to carcinogenesis. In R. Rein (Ed.), Molecular basis of cancer (pp. 299–308). Buffalo, New York: Alan R. Liss, Inc.
  • Hopkins, R. C. (1984b). Are answers hidden in multistranded nucleic acids? Comments Molecular Cell Biophysics, 2, 153–178.
  • Hopkins, R. C. (1986). A unique four-stranded model of a homologous recombination intermediate. Journal of Theoretical Biology, 120, 215–222. doi:10.1016/S0022-5193(86)80175-8
  • Islam, B., Stadlbauer, P., Neidle, S., Haider, S., & Sponer, J. (2016). Can we execute reliable MM-PBSA free energy computations of relative stabilities of different guanine quadruplex folds? The Journal of Physical Chemistry B, 120, 2899–2912. doi:10.1021/acs.jpcb.6b01059
  • Ivani, I., Dans, P. D., Noy, A., Pérez, A., Faustino, I., Hospital, A., … Orozco, M. (2015). Parmbsc1: A refined force field for DNA simulations. Nature Methods, 13, 55–58. doi:10.1038/nmeth.3658
  • Jeffrey, G. A., & Saenger, W. (1991). Hydrogen bonding in biological structures. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-85135-3
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79, 926. doi:10.1063/1.445869
  • Joung, I. S., & Cheatham 3rd, T. E. (2008). Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. The Journal of Physical Chemistry B, 112, 9020–9041. doi:10.1021/jp8001614
  • Lavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D., & Zakrzewska, K. (2009). Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Research, 37, 5917–5929. doi:10.1093/nar/gkp608
  • Le Grand, S., Götz, A. W., & Walker, R. C. (2013). SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Computer Physics Communications, 184, 374–380. doi:10.1016/j.cpc.2012.09.022
  • Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., … Scott, M. P. (2000). Molecular cell biology. New York, NY: W. H. Freeman.
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8, 3314–3321. doi:10.1021/ct300418h
  • Pérez, A., Marchán, I., Svozil, D., Šponer, J., Cheatham 3rd, T. E., Laughton, C. A., & Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: Improving the description of alpha/gamma conformers. Biophysical Journal, 92, 3817–3829. doi:10.1529/biophysj.106.097782
  • Pohl, F. M., & Jovin, T. M. (1972). Salt-induced co-operative conformational change of a synthetic DNA: Equilibrium and kinetic studies with poly(dG-dC). Journal of Molecular Biology, 67, 375–396. doi:10.1016/0022-2836(72)90457-3
  • Rich, A., Nordheim, A., & Wang, A. H. (1984). The chemistry and biology of left-handed Z-DNA. Annual Review of Biochemistry, 53, 791–846. doi:10.1146/annurev.bi.53.070184.004043
  • Rich, A., & Zhang, S. (2003). Timeline: Z-DNA: The long road to biological function. Nature Reviews. Genetics, 4, 566–72. doi:10.1038/nrg1115
  • Roe, D. R., & Cheatham 3rd, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9, 3084–3095. doi:10.1021/ct400341p
  • Ryckaert, J.-P. J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327–341. doi:10.1016/0021-9991(77)90098-5
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Grand, S. Le Walker, R. C., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9, 3878–3888. doi:10.1021/ct400314y
  • Shui, X., McFail-Isom, L., Hu, G. G., & Williams, L. D. (1998). The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry, 37, 8341–55. doi:10.1021/bi973073c
  • Sponer, J., Jurecka, P., & Hobza, P. (2004). Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. Journal of the American Chemical Society, 126, 10142–51. doi:10.1021/ja048436s
  • Šponer, J., Mládek, A., Špačková, N., Cang, X., Cheatham 3rd, T. E., & Grimme, S. (2013). Relative stability of different DNA guanine quadruplex stem topologies derived using large-scale quantum-chemical computations. Journal of the American Chemical Society, 135, 9785–96. doi:10.1021/ja402525c
  • Srinivasan, J., Cheatham 3rd, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate − DNA helices. Journal of the American Chemical Society, 120, 9401–9409. doi:10.1021/ja981844+
  • Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., Van Der Marel, G. A., & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282, 680–686. doi:10.1038/282680a0
  • Watson, J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 171, 737–738.
  • Wu, Z., Delaglio, F., Tjandra, N., Zhurkin, V., & Bax, A. (2003). Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and (31)P chemical shift anisotropy. Journal of Biomolecular NMR, 26, 297–315. doi:12815257
  • Zgarbová, M., Luque, F. J., Šponer, J., Cheatham 3rd, T. E., Otyepka, M., & Jurečka, P. (2013). Toward improved description of DNA backbone: Revisiting epsilon and zeta torsion force field parameters. Journal of Chemical Theory and Computation, 9, 2339–2354. doi:10.1021/ct400154j
  • Zgarbová, M., Otyepka, M., Šponer, J., Mládek, A., Banáš, P., Cheatham 3rd, T. E., & Jurečka, P. (2011). Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. Journal of Chemical Theory and Computation, 7, 2886–2902. doi:10.1021/ct200162x
  • Zgarbová, M., Šponer, J., Otyepka, M., Cheatham 3rd, T. E., Galindo-Murillo, R., & Jurečka, P. (2015). Refinement of the sugar-phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. Journal of Chemical Theory and Computation, 11, 5723–5736. doi:10.1021/acs.jctc.5b00716

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.