577
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Antimicrobial cell penetrating peptides with bacterial cell specificity: pharmacophore modelling, quantitative structure activity relationship and molecular dynamics simulation

, , , , , & show all
Pages 2370-2380 | Received 28 Feb 2018, Accepted 20 May 2018, Published online: 13 Nov 2018

References

  • Agrawal, N., & Skelton, A. A. (2016). 12-crown-4 ether disrupts the patient brain-derivedamyloid-beta-fibril trimer: Insight from all-atom molecular dynamics simulations. ACS Chemical Neuroscience, 7(10), 1433–1441. doi:10.1021/acschemneuro.6b00185c
  • Agrawal, N., & Skelton, A. A. (2018). Binding of 12-crown-4 with alzheimer’s abeta40 and abeta42 monomers and its effect on their conformation: Insight from molecular dynamics simulations. Molecular Pharmaceutics, 15(1), 289–299. doi:10.1021/acs.molpharmaceut.7b00966
  • Aoki, W., & Ueda, M. (2013). Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals, 6(8), 1055–1081. doi:10.3390/ph6081055
  • Aparoy, P., Reddy, K. K., & Reddanna, P. (2012). Structure and ligand based drug design strategies in the development of novel 5-LOX inhibitors. Current Medicinal Chemistry, 19(22), 3763–3778. doi:10.2174/092986712801661112
  • Arasteh, S., & Bagheri, M. (2017). Molecular dynamics simulation and analysis of the antimicrobial peptide-lipid bilayer interactions. Methods in Molecular Biology, 1548, 103–118. doi:10.1007/978-1-4939-6737-7_8
  • Arnusch, C. J., Ulm, H., Josten, M., Shadkchan, Y., Osherov, N., Sahl, H. G., & Shai, Y. (2012). Ultrashort peptide bioconjugates are exclusively antifungal agents and synergize with cyclodextrin and amphotericin B. Antimicrobial Agents and Chemotherapy, 56(1), 1–9. doi:10.1128/AAC.00468-11
  • Bahnsen, J. S., Franzyk, H., Sandberg-Schaal, A., & Nielsen, H. M. (2013). Antimicrobial and cell-penetrating properties of penetratin analogs: Effect of sequence and secondary structure. Biochimica et Biophysica Acta - Biomembranes, 1828(2), 223–232. doi:10.1016/j.bbamem.2012.10.010
  • Bahnsen, J. S., Franzyk, H., Sayers, E. J., Jones, A. T., & Nielsen, H. M. (2015). Cell-penetrating antimicrobial peptides-prospectives for targeting intracellular infections. Pharmaceutical Research, 32(5), 1546–1556. doi:10.1007/s11095-014-1550-9
  • Bhonsle, J. B., Venugopal, D., Huddler, D. P., Magill, A. J., & Hicks, R. P. (2007). Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. Journal of Medicinal Chemistry, 50(26), 6545–6553. 10.1021/jm070884y
  • Bi, X., Wang, C., Dong, W., Zhu, W., & Shang, D. (2014). Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. Journal of Antibiotics (Tokyo), 67(5), 361–368. doi:10.1038/ja.2014.4
  • Bixon, M., & Limn, S. (1966). Potential functions and conformations in cycloalkanes. Tetrahedron, 23 (2), 769–784. doi:10.1016/0040-4020(67)85023-3
  • Bobone, S., Piazzon, A., Orioni, B., Pedersen, J. Z., Nan, Y. H., Hahm, K. S., & Stella, L. (2011). The thin line between cell-penetrating and antimicrobial peptides: The case of Pep-1 and Pep-1-K. Journal of Peptide Science, 17(5), 335–341. doi:10.1002/psc.1340
  • Bolintineanu, D., Hazrati, E., Davis, H. T., Lehrer, R. I., & Kaznessis, Y. N. (2010). Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides, 31(1), 1–8. doi:10.1016/j.peptides.2009.11.010
  • Braga, C., & Travis, K. P. (2014). A configurational temperature Nosé-Hoover thermostat. The Journal of Chemical Physics, 123, 134101. doi:10.1063/1.2013227
  • Branco, P., Viana, T., Albergaria, H., & Arneborg, N. (2015). Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells. International Journal of Food Microbiology, 205, 112–118. doi:10.1016/j.ijfoodmicro.2015.04.015
  • Burns, K. E., McCleerey, T. P., & Thévenin, D. (2016). pH-selective cytotoxicity of pHLIP-antimicrobial peptide conjugates. Scientific Reports, 6(2), 28465. doi:10.1038/srep28465
  • Carmona-Ribeiro, A., & de Melo Carrasco, L. (2014). Novel formulations for antimicrobial peptides. International Journal of Molecular Sciences, 15(10), 18040–18083. doi:10.3390/ijms151018040
  • Carnicelli, V., Lizzi, A. R., Ponzi, A., Amicosante, G., Bozzi, A., & Di Giulio, A. (2013). Interaction between antimicrobial peptides (AMPs) and their primary target, the biomembranes, Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, 2, 1123–1134.
  • Chen, Y., Guarnieri, M. T., Vasil, A. I., Vasil, M. L., Mant, C. T., & Hodges, R. S. (2007). Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 51(4), 1398–1406. doi:10.1128/AAC.00925-06
  • Cherkasov, A. (2005). Inductive QSAR descriptors. Distinguishing compounds with antibacterial activity by artificial neural networks. International Journal of Molecular Sciences, 6(1–2), 63–86. doi:10.3390/i6010063
  • Da Costa, J. P., Cova, M., Ferreira, R., & Vitorino, R. (2015). Antimicrobial peptides: An alternative for innovative medicines? Applied Microbiology and Biotechnology, 99(5), 2023–2040. doi:10.1007/s00253-015-6375-x
  • Darden, T., York, D., Pedersen, L., Darden, T., York, D., & Pedersen, L. (2007). Particle mesh Ewald: An N.log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 1–5. doi:10.1063/1.464397
  • Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433. doi:10.1128/MMBR.00016-10
  • Delcour, A. H. (2009). Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta, 1794(5), 808–816. doi:10.1016/j.bbapap.2008.11.005.Outer
  • Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10-11), 647–671.
  • Eckhard, L. H., Sol, A., Abtew, E., Shai, Y., Domb, A. J., Bachrach, G., & Beyth, N. (2014). Biohybrid polymer-antimicrobial peptide medium against Enterococcus faecalis. PloS One, 9(10), e109413. doi:10.1371/journal.pone.0109413
  • Eriksen, T. H. B., Skovsen, E., & Fojan, P. (2013). Release of antimicrobial peptides from electrospun nanofibers as a drug delivery system. Journal of Biomedical Nanotechnology, 9(3), 492–498. doi:10.1166/jbn.2013.1553
  • Faraz, M., Verma, G., & Akhtar, W. (2016). Docking study and ADME prediction of acyl 1, 3, 4-thiadiazole amides and sulfonamides as antitubulin agents. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2016.11.004
  • Fjell, C. D., Jenssen, H., Hilpert, K., Cheung, W. A., Panté, N., Hancock, R. E. W., & Cherkasov, A. (2009). Identification of novel antibacterial peptides by chemoinformatics and machine learning. Journal of Medicinal Chemistry, 52(7), 2006–2015. doi:10.1021/jm8015365
  • Frimayanti, N., Yam, M. L., Lee, H. B., & Othman, R. (2011). Validation of quantitative structure-activity relationship (QSAR) model for photosensitizer activity prediction. International Journal of Molecular Science, 12(12), 8626–8644. doi:10.3390/ijms12128626
  • Futaki, S. (2005). Membrane-permeable arginine-rich peptides and the translocation mechanisms. Advanced Drud Delivery Reviews, 57(2), 547–558. doi:10.1016/j.addr.2004.10.009
  • Guilhelmelli, F., Vilela, N., Albuquerque, P., Derengowski, L. da S., Silva-Pereira, I., & Kyaw, C. M. (2013). Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance. Frontiers in Microbiology, 4(12), 1–12. doi:10.3389/fmicb.2013.00353
  • Henriques, S. T., Melo, M. N., & Castanho, M. A. R. B. (2006). Cell-penetrating peptides and antimicrobial peptides: How different are they? The Biochemical Journal, 399(1), 1–7. doi:10.1042/BJ20061100
  • Herce, H. D., & Garcia, A. E. (2008). Cell penetrating peptides: How do they do it? Journal of Biological Physics, 33, 345–356. doi:10.1007/s10867-008-9074-3
  • Hess, B., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472
  • Huang, J., & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. doi:10.1002/jcc.23354
  • Huerta-Cantillo, J., & Navarro-García, F. (2016). Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells. Molecules, 9(10), 12.
  • Jin, L., Bai, X., Luan, N., Yao, H., Zhang, Z., Liu, W., & Lu, Q. (2016). A designed tryptophan- and lysine/arginine-rich antimicrobial peptide with therapeutic potential for clinical antibiotic-resistant candida albicans vaginitis. Journal of Medicinal Chemistry, 59(5), 1791–1799. doi:10.1021/acs.jmedchem.5b01264
  • Kaur, P., Sharma, V., & Kumar, V. (2012). Pharmacophore modelling and 3D-QSAR studies on n(3)-phenylpyrazinones as corticotropin-releasing factor 1 receptor antagonists. International Journal of Medicinal Chemistry, 2012, 452325. doi:10.1155/2012/452325
  • Kim, S. J., Kim, J. S., Lee, Y. S., Sim, D. W., Lee, S. H., Bahk, Y. Y., & Won, H. S. (2013). Structural characterization of de novo designed L5K5W model peptide isomers with potent antimicrobial and varied hemolytic activities. Molecules, 18(1), 859–876. doi:10.3390/molecules18010859
  • Kingsbury, W. D., Boehm, J. C., Mehta, R. J., Grappel, S. F., & Gilvarg, C. (1984). A novel peptide delivery system involving peptidase activated prodrugs as antimicrobial agents. Synthesis and biological activity of peptidyl derivatives of 5-fluorouracil. Journal of Medicinal Chemistry, 27(11), 1447–1451.
  • Koymans, K. J., Feitsma, L. J., Brondijk, T. H. C., Aerts, P. C., Lukkien, E., Lössl, P., … & Huizinga, E. G. (2015). Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proceedings of the National Academy of Sciences, 112(35), 11018–11023.
  • Lee, T., Hall, K. N., & Aguilar, M. (2016). Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Current Topics in Medicinal Chemistry, 16(1), 25–39.
  • Li, L., Vorobyov, I., & Allen, T. W. (2013). The different interactions of lysine and arginine side chains with lipid membranes. The Journal of Physical Chemistry, 117(40), 11906–11920. doi:10.1021/jp405418y
  • Lv, Y., Wang, J., Gao, H., Wang, Z., Dong, N., Ma, Q., & Shan, A. (2014). Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36. PloS One, 9(1), e86364. doi:10.1371/journal.pone.0086364
  • Maekawa, K., Azuma, M., Okuno, Y., Tsukamoto, T., Nishiguchi, K., Setsukinai, K., & Rokushima, M. (2015). Antisense peptide nucleic acid–peptide conjugates for functional analyses of genes in Pseudomonas aeruginosa. Bioorganic & Medicinal Chemistry, 23(22), 7234–7239. doi:10.1016/j.bmc.2015.10.020
  • Malanovic, N., & Lohner, K. (2015). Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta - Biomembranes, 1858(5), 936–946. doi:10.1016/j.bbamem.2015.11.004
  • Mardirossian, M., Grzela, R., Giglione, C., Meinnel, T., Gennaro, R., Mergaert, P., & Scocchi, M. (2014). The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chemistry and Biology, 21(12), 1639–1647. doi:10.1016/j.chembiol.2014.10.009
  • Matsuzaki, K. (2009). Control of cell selectivity of antimicrobial peptides. Biochimica et Biophysica Acta – Biomembranes, 1788(8), 1687–1692. doi:10.1016/j.bbamem.2008.09.013
  • Mehta, H., Khokra, S. L., Arora, K., & Kaushik, P. (2012). Pharmacophore mapping and 3D-QSAR analysis of Staphylococcus aureus Sortase a inhibitors. Der Pharma Chemica, 4(5), 1776–1784.
  • Meraj, K., Kumar, K. K., Shaikheldin, M. S., Azam, S. N., Anugnya, P. R., Kumar, M., & Match, B. (2013). Pharmacophore modelling, 3D-QSAR study and docking of naphthol derivatives as b-raf(v600e) receptor antagonists. Vedic Research International Bioinformatics & Proteomics, 1(1), 18–29. doi:10.14259/bp.v1i1.44
  • Michael Henderson, J., & Lee, K. Y. C. (2013). Promising antimicrobial agents designed from natural peptide templates. Current Opinion in Solid State and Materials Science, 17(4), 175–192. doi:10.1016/j.cossms.2013.08.003
  • Mishra, B., Leishangthem, G. D., Gill, K., Singh, A. K., Das, S., Singh, K., & Dey, S. (2013). A novel antimicrobial peptide derived from modified N-terminal domain of bovine lactoferrin: Design, synthesis, activity against multidrug-resistant bacteria and Candida. Biochimica et Biophysica Acta – Biomembranes, 1828(2), 677–686. doi:10.1016/j.bbamem.2012.09.021
  • Mizuguchi, T., & Matubayasi, N. (2018). Free-energy analysis of peptide binding in lipid membrane using all-atom molecular dynamics simulation combined with theory of solutions. The Journal of Physical Chemistry B, 122, 3219–3229. doi:10.1021/acs.jpcb.7b08241
  • Mollica, A., Zengin, G., Durdagi, S., Ekhteiari Salmas, R., Macedonio, G., Stefanucci, A., …Novellino, E. (2018). Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary QSAR models. Journal of Biomolecular Structure and Dynamics, 22, 1–15.
  • Muller, P. Y., & Milton, M. N. (2012). The determination and interpretation of the therapeutic index in drug development. Nature Reviews Drug Discovery, 11(10), 751–761. doi:10.1038/nrd3801
  • Nakase, I., Takeuchi, T., Tanaka, G., & Futaki, S. (2008). Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides. Advanced Drug Delivery Reviews, 60(4-5), 598–607. doi:10.1016/j.addr.2007.10.006
  • Nguyen, L. T., Chau, J. K., Perry, N. A., de Boer, L., Zaat, S. A. J., & Vogel, H. J. (2010). Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS One, 5(9), 1–8. doi:10.1371/journal.pone.0012684
  • Ong, Z. Y., Wiradharma, N., & Yang, Y. Y. (2014). Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Advanced Drug Delivery Reviews, 78, 28–45. doi:10.1016/j.addr.2014.10.013
  • Park, K. H., Nan, Y. H., Park, Y., Kim, J. I., Park, I. S., Hahm, K. S., & Shin, S. Y. (2009). Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. Biochimica et Biophysica Acta - Biomembranes, 1788(5), 1193–1203. doi:10.1016/j.bbamem.2009.02.020
  • Parrinello, M., & Rahman, A. (1995). Polymorphic transitions in single crystals: A new molecular dynamics method Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics, 52(12), 7182–7190.
  • Persson, D., Esbjo, E. K., Gokso, M., Lincoln, P., & Norde, B. (2004). Membrane binding and translocation of cell-penetrating peptides. Biochemistry, 43(12), 3471–3489.
  • Porto, W., Silva, O. N., & Franco, O. (2012). Prediction and rational design of antimicrobial peptides. In E. Faraggi (Ed.), Protein structure. Croatia: InTech.
  • Pushpanathan, M., Gunasekaran, P., & Rajendhran, J. (2016). Antimicrobial peptides: Versatile biological properties, International Journal of Peptides, 2013(2013), 1–23. doi:10.1155/2013/675391
  • Raymonda, M. H., Almeida, P., & Pokorny, A. (2017). Investigation of domains in mixtures of high-melting phospholipids, POPC, and cholesterol. Biophysical Journal, 112(3), 224a.
  • Schmidt, N. W., & Wong, G. C. L. (2013). Antimicrobial peptides and induced membrane curvature: Geometry, coordination chemistry, and molecular engineering. Current Opinion in Solid State & Materials Science, 17(4), 151–163. doi:10.1016/j.cossms.2013.09.004
  • Sengupta, S., Chattopadhyay, M. K., & Grossart, H. P. (2013). The multifaceted roles of antibiotics and antibiotic resistance in nature. Frontiers in Microbiology, 4(3), 1–13. doi:10.3389/fmicb.2013.00047
  • Shen, Y., & Maupetit, J. (2012). PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Research, 40(5), 288–293. doi:10.1093/nar/gks419
  • Souto, A., Montaos, M. A., Balado, M., Osorio, C. R., Rodríguez, J., Lemos, M. L., & Jiménez, C. (2013). Synthesis and antibacterial activity of conjugates between norfloxacin and analogues of the siderophore vanchrobactin. Bioorganic & Medicinal Chemistry, 21(1), 295–302. doi:10.1016/j.bmc.2012.10.028
  • Splith, K., & Neundorf, I. (2011). Antimicrobial peptides with cell-penetrating peptide properties and vice versa. European Biophysics Journal, 40(4), 387–397. doi:10.1007/s00249-011-0682-7
  • Su, Y., Doherty, T., Waring, A. J., Ruchala, P., & Hong, M. (2009). Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from13C, 31P, and19F Solid-State NMR. Biochemistry, 48(21), 4587–4595. doi:10.1021/bi900080d
  • Taboureau, O., Olsen, O. H., Nielsen, J. D., Raventos, D., Mygind, P. H., & Kristensen, H. H. (2006). Design of novispirin antimicrobial peptides by quantitative structure-activity relationship. Chemical Biology and Drug Design, 68(1), 48–57. doi:10.1111/j.1747-0285.2006.00405.x
  • Tamargo, J., Le Heuzey, J. Y., & Mabo, P. (2015). Narrow therapeutic index drugs: A clinical pharmacological consideration to flecainide. European Journal of Clinical Pharmacology, 71(5), 549–567. doi:10.1007/s00228-015-1832-0
  • Tang, Y. L., Shi, Y. H., Zhao, W., Hao, G., & Le, G. W. (2008). Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane. Journal of Pharmaceutical and Biomedical Analysis, 48(4), 1187–1194. doi:10.1016/j.jpba.2008.09.006
  • Toropova, M. A., Veselinović, A. M., Veselinović, J. B., Stojanović, D. B., & Toropov, A. A. (2015). QSAR modeling of the antimicrobial activity of peptides as a mathematical function of a sequence of amino acids. Computational Biology and Chemistry, 59, 126–130. doi:10.1016/j.compbiolchem.2015.09.009
  • Torrent, M., Andreu, D., Nogués, V. M., & Boix, E. (2011). Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One, 6(2), 1–8. doi:10.1371/journal.pone.0016968
  • Tripathi, J. K., Kathuria, M., Kumar, A., Mitra, K., & Ghosh, J. K. (2015). An Unprecedented alteration in mode of action of IsCT resulting its translocation into bacterial cytoplasm and inhibition of macromolecular syntheses. Scientific Reports, 5, 9127. doi:10.1038/srep09127
  • Tsai, C.-W., Hsu, N.-Y., Wang, C.-H., Lu, C.-Y., Chang, Y., Tsai, H.-H. G., & Ruaan, R.-C. (2009). Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Journal of Molecular Biology, 392(3), 837–54. doi:10.1016/j.jmb.2009.06.071
  • Vale, N., Aguiar, L., & Gomes, P. (2014). Antimicrobial peptides: A new class of antimalarial drugs? Frontiers in Pharmacology, 5(12), 275. doi:10.3389/fphar.2014.00275
  • Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C. P., & Agrawal, R. K. (2011). Validation of QSAR models - Strategies and importance. International Journal of Drug Design & Discovery, 2(3), 511–519.
  • Velasco-Bolom, J. L., Corzo, G., & Garduño-Juárez, R. (2017). Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides. Journal of Biomolecular Structure and Dynamics, 36, 2070–2084.
  • Vishnepolsky, B., & Pirtskhalava, M. (2014). Prediction of linear cationic antimicrobial peptides based on characteristics responsible for their interaction with the membranes. Journal of Chemical Information and Modeling, 54(5), 1512–1523. doi:10.1021/ci4007003
  • Vora, J., Patel, S., Sinha, S., Sharma, S., Srivastava, A., Chhabria, M., & Shrivastava, N. (2018). Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV. Journal of Biomolecular Structure and Dynamics, 2018, 1–16.
  • Wang, S., Zeng, X., Yang, Q., & Qiao, S. (2016). Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. International Journal of Molecular Sciences, 17(5), 603. doi:10.3390/ijms17050603
  • Wang, Y., Ding, Y., Wen, H., Lin, Y., Hu, Y., Zhang, Y., & Lin, Z. (2012). QSAR modeling and design of cationic antimicrobial peptides based on structural properties of amino acids. Combinatorial Chemistry & High Throughput Screening, 15(4), 347–353. doi:10.2174/138620712799361807
  • Wiesner, J., & Vilcinskas, A. (2010). Antimicrobial peptides: The ancient arm of the human immune system. Virulence, 1(5), 440–464. doi:10.4161/viru.1.5.12983
  • Wu, E. L., Cheng, X., Jo, S., Rui, H., Song, K. C., Dávila-Contreras, E. M., & Klauda, J. B. (2014). CHARMM-GUI membrane builder toward realistic biological membrane simulations. Journal of Computational Chemistry, 35(27), 1997–2004. doi:10.1002/jcc.23702
  • Xie, H., Qiu, K., & Xie, X. (2014). 3D QSAR studies, pharmacophore modeling and virtual screening on a series of steroidal aromatase inhibitors. International Journal of Molecular Sciences, 15(11), 20927–20947. doi:10.3390/ijms151120927

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.