121
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Identification of protegrin-1 as a stable and nontoxic scaffold among protegrin family – a computational approach

&
Pages 2430-2439 | Received 17 Jan 2018, Accepted 08 May 2018, Published online: 05 Dec 2018

References

  • Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., …Martin, M. J. (2004). UniProt: The universal protein knowledgebase. Nucleic acids research, 32(Suppl_1.), D115–D119. doi: 10.1093/nar/gkh131
  • Awasthi, M., Singh, S., Pandey, V. P., & Dwivedi, U. N. (2017). Modulation in the conformational and stability attributes of the Alzheimer’s disease associated amyloid-beta mutants and their favorable stabilization by curcumin: molecular dynamics simulation analysis. Journal of Biomolecular Structure and Dynamics, 36(2), 407–422. doi: 10.1080/07391102.2017.1279078
  • Azarhazin, E., Izadyar, M., & Housaindokht, M. R. (2017). Molecular dynamic simulation and DFT study on the drug-DNA interaction; crocetin as an anti-cancer and DNA nanostructure model. Journal of Biomolecular Structure and Dynamics, 36(4), 1063–1074. doi: 10.1080/07391102.2017.1310060
  • Bacalum, M., & Radu, M. (2015). Cationic antimicrobial peptides cytotoxicity on mammalian cells: An analysis using therapeutic index integrative concept. International Journal of Peptide Research and Therapeutics, 21(1), 47–55. doi: 10.1007/s10989-014-9430-z
  • Baker, E. N., & Hubbard, R. E. (1984). Hydrogen bonding in globular proteins. Progress in Biophysics and Molecular Biology, 44(2), 97–179. doi: 10.1016/0079-6107(84)90007-5
  • Barcellos, M. P., Santos, C. B., Federico, L. B., Almeida, P. F. D., Silva, C. H. D., & Taft, C. A. (2018). Pharmacophore and structure-based drug design, molecular dynamics and admet/tox studies to design novel potential Pad4 inhibitors. Journal of Biomolecular Structure and Dynamics. doi: 10.1080/07391102.2018.1444511
  • Benincasa, M., Scocchi, M., Pacor, S., Tossi, A., Nobili, D., Basaglia, G., … Gennaro, R. (2006). Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. Journal of antimicrobial chemotherapy, 58(5), 950–959. doi: 10.1093/jac/dkl382
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., …Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. doi: 10.1093/nar/28.1.235
  • Bolintineanu, D. S., & Kaznessis, Y. N. (2011). Computational studies of protegrin antimicrobial peptides: A review. Peptides, 32(1), 188–201. doi: 10.1016/j.peptides.2010.10.006
  • Bolintineanu, D., Hazrati, E., Davis, H. T., Lehrer, R. I., & Kaznessis, Y. N. (2010). Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides, 31(1), 1–8. doi: 10.1016/j.peptides.2009.11.010
  • De Groot, B. L., Van Aalten, D. M. F., Scheek, R. M., Amadei, A., Vriend, G., & Berendsen, H. J. C. (1997). Prediction of protein conformational freedom from distance constraints. Proteins Structure Function and Genetics, 29(2), 240–251. doi: 10.1002/(sici)1097-0134(199710)29:2<240::aid-prot11>3.0.co;2-o
  • Glukhov, E., Stark, M., Burrows, L. L., & Deber, C. M. (2005). Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. Journal of Biological Chemistry, 280(40), 33960–33967. doi: 10.1074/jbc.m507042200
  • Gopal, R., Seo, C. H., Song, P. I., & Park, Y. (2013). Effect of repetitive lysine–tryptophan motifs on the bactericidal activity of antimicrobial peptides. Amino acids, 44(2), 645–660. doi: 10.1007/s00726-012-1388-6
  • Guex, N., &Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb Viewer: an environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. doi: 10.1002/elps.1150181505
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Raghava, G. P., … Open Source Drug Discovery Consortium. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. doi: 10.1371/journal.pone.0073957
  • Humphrey, W., Dalke, A., &Schulten, K. (1996). VMD: visual molecular dynamics. Journal of molecular graphics, 14(1), 33–38. doi: 10.1016/0263-7855(96)00018-5
  • Jenssen, H., Hamill, P., & Hancock, R. E. (2006). Peptide antimicrobial agents. Clinical microbiology reviews, 19(3), 491–511. doi: 10.1128/CMR.00056-05
  • Krieger, E., YASARA Version 16.11.20. © 1993-2016, Bioinformatics 30, 2891–2892.
  • Kundu, S. (2017). Effects of different force fields on the structural character of α synuclein β-hairpin peptide (35-56) in aqueous environment. Journal of Biomolecular Structure and Dynamics, 36(2), 302–317. doi: 10.1080/07391102.2016.1276478
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. doi: 10.1134/s0026893308040195
  • Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I., & Lomize, A. L. (2012). OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic acids research, 40(Database issue), D370–D376. doi: 10.1093/nar/gkr703
  • MATLAB. (2017b). The MathWorks, Inc., Natick, Massachusetts, United States.
  • Matsuzaki, K. (2009). Control of cell selectivity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(8), 1687–1692. doi: 10.1016/j.bbamem.2008.09.013
  • Mills, J. E. J., & Dean, P. M. (1996). Three-dimensional hydrogen-bond geometry and probability information from a crystal survey. Journal of Computer-aided Molecular Design, 10(6), 607–622. doi: 10.1007/bf00134183
  • Morris, A. L., MacArthur, M. W., Hutchinson, E. G., & Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins: Structure, Function, and Bioinformatics, 12(4), 345–364. doi: 10.1002/prot.340120407
  • Paiva, A. D., de Oliveira, M. D., de Paula, S. O., Baracat-Pereira, M. C., Breukink, E., &Mantovani, H. C. (2012). Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology, 158(11), 2851–2858. doi: 10.1099/mic.0.062190-0
  • Pedretti, A., Villa, L., & Vistoli, G. (2004). VEGA–an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. Journal of computer-aided molecular design, 18(3), 167–173. doi: 10.1023/b:jcam.0000035186.90683.f2
  • Petkov, P., Marinova, R., Kochev, V., Ilieva, N., Lilkova, E., & Litov, L. (2018). Computational study of solution behavior of Magainin 2 monomers. Journal of Biomolecular Structure and Dynamics. doi: 10.1080/07391102.2018.1454850
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi: 10.1002/jcc.20084
  • Phambu, N., Almarwani, B., Garcia, A. M., Hamza, N. S., Muhsen, A., Baidoo, J. E., &Sunda-Meya, A. (2017). Chain length effect on the structure and stability of antimicrobial peptides of the (RW) n series. Biophysical Chemistry, 227, 8–13. doi: 10.1016/j.bpc.2017.05.009
  • Rodziewicz‐Motowidło, S., Mickiewicz, B., Greber, K., Sikorska, E., Szultka, Ł., Kamysz, E., &Kamysz, W. (2010). Antimicrobial and conformational studies of the active and inactive analogues of the protegrin-1 peptide. The FEBS Journal, 277(4), 1010–1022. doi: 10.1111/j.1742-4658.2009.07544.x
  • Ruiz, J., Calderon, J., Rondón-Villarreal, P., & Torres, R. (2014). Analysis of structure and hemolytic activity relationships of antimicrobial peptides (AMPs). InLuis F. Castillo, Marco Cristancho, Gustavo Isaza, Andrés Pinzón, & Juan Manuel Corchado Rodríguez (Eds.), Advances in computational biology (pp. 253–258). Cham: Springer.
  • Seeliger, D., Haas, J., & De Groot, B. L. (2007). Geometry-based sampling of conformational transitions in proteins. Structure, 15(11), 1482–1492. doi: 10.1016/j.str.2007.09.017
  • Seo, M. D., Won, H. S., Kim, J. H., Mishig-Ochir, T., & Lee, B. J. (2012). Antimicrobial peptides for therapeutic applications: A review. Molecules, 17(10), 12276–12286. doi: 10.3390/molecules171012276
  • Sharadadevi, A., & Nagaraj, R. (2017). On the intrinsic propensity of the Asn-Gly sequence to fold into type I′ β-turn: molecular dynamics simulations of Asn-Gly β-turn containing peptide sequences. Journal of Biomolecular Structure and Dynamics. doi: 10.1080/07391102.2017.1403958
  • Sharma, G., Vasanth, K. S., & Wahab, H. A. (2017). Molecular docking, synthesis, and biological evaluation of naphthoquinone as potential novel scaffold for H5N1 neuraminidase inhibition. Journal of Biomolecular Structure and Dynamics, 36 (1), 233–242. doi: 10.1080/07391102.2016.1274271
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., …Thompson, J. D. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology, 7(1), 539. doi: 10.1038/msb.2011.75
  • Sivashanmugam, M., Sulochana, K. N., & Umashankar, V. (2018). Virtual screening of natural inhibitors targeting ornithine decarboxylase with pharmacophore scaffolding of DFMO and validation by molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics. doi: 10.1080/07391102.2018.1439772
  • Steinberg, D. A., Hurst, M. A., Fujii, C. A., Kung, A. H., Ho, J. F., Cheng, F. C., …Fiddes, J. C. (1997). Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrobial agents and chemotherapy, 41(8), 1738–1742.
  • Velasco-Bolom, J. L., Corzo, G., & Garduño-Juárez, R. (2017). Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides. Journal of Biomolecular Structure and Dynamics, 36(8), 2070–2084. doi: 10.1080/07391102.2017.1341340
  • Vijayakumar, S., & Pradeep, D. (2018). Structural, molecular motions, and free-energy landscape of leishmania sterol-14α-demethylase wild type and drug resistant mutant: a comparative molecular dynamics study. Journal of Biomolecular Structure and Dynamics. doi: 10.1080/07391102.2018.1461135
  • Wang, S., Zeng, X., Yang, Q., & Qiao, S. (2016). Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. International journal of molecular sciences, 17(5), 603. doi: 10.3390/ijms17050603
  • Yu, J., Becker, M. L., & Carri, G. A. (2011). The influence of amino acid sequence and functionality on the binding process of peptides onto gold surfaces. Langmuir, 28(2), 1408–1417. doi: 10.1021/la204109r

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.