178
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Delineating the active site architecture of G9a lysine methyltransferase through substrate and inhibitor binding mode analysis: a molecular dynamics study

, & ORCID Icon
Pages 2581-2592 | Received 07 Apr 2018, Accepted 30 May 2018, Published online: 17 Nov 2018

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19–25. doi:10.1016/j.softx.2015.06.001
  • Allfrey, G., Faulkner, R., & Mirsky, A. E. (1964). Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proceedings of National Academy of Science of the United States of America, 51(5), 786–794. doi:10.1073/pnas.51.5.786.
  • Ambure, P., Bhat, J., Puzyn, T., Roy, K., & Taylor, P. (2018). Identifying natural compounds as multi-target directed ligands against Alzheimer ’ s disease: An in silico approach. Journal of Biomolecular Structure and Dynamics 1102, 1–25. doi:10.1080/07391102.2018.1456975
  • An, S., Yeo, K. J., Jeon, Y. H., & Song, J. J. (2011). Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism. Journal of Biological Chemistry, 286(10), 8369–8374. doi:10.1074/jbc.M110.203380
  • Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E., & Moudrianakis, E. N. (1991). The nucleosomal core histone octamer at 3.1 A resolution: A tripartite protein assembly and a left-handed superhelix. Proceedings of the National Academy of Sciences of the United States of America, 88(22), 10148–10152. doi:10.1073/pnas.88.22.10148
  • Arya, G., Maitra, A., & Grigoryev, S. A. (2010). A structural perspective on the where, how, why, and what of nucleosome positioning. Journal of Biomolecular Structure and Dynamics, 27(6), 803–820. doi:10.1080/07391102.2010.10508585
  • Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381–395. doi:10.1038/cr.2011.22
  • Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature, 447(7143), 407–412. doi:10.1038/nature05915
  • Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23(7), 781–783. doi:10.1101/gad.1787609
  • Choi, J., Jang, H., Kim, H., Lee, J. H., Kim, S. T., Cho, E. J., & Youn, H. D. (2014). Modulation of lysine methylation in myocyte enhancer factor 2 during skeletal muscle cell differentiation. Nucleic Acids Research, 42(1), 224–234. doi:10.1093/nar/gkt873
  • Copeland, R. A. (2012). Protein methyltransferase inhibitors as personalized cancer therapeutics. Drug Discovery Today: Therapeutic Strategies, 9(2–3), e83–e90. https://doi.org/10.1016/j.ddstr.2011.08.001
  • Copeland, R. A., Solomon, M. E., & Richon, V. M. (2009). Protein methyltransferases as a target class for drug discovery. Nature Reviews Drug Discovery, 8(9), 724–732. doi:10.1038/nrd2974
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N ⋅log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Fährrolfes, R., Bietz, S., Flachsenberg, F., Meyder, A., Nittinger, E., Otto, T., … Rarey, M. (2017). ProteinsPlus: A web portal for structure analysis of macromolecules. Nucleic Acids Research, 45(W1), W337–W343. doi:10.1093/nar/gkx333
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696. doi:10.1093/bioinformatics/btl461
  • Huang, J., Dorsey, J., Chuikov, S., Zhang, X., Jenuwein, T., Reinberg, D., & Berger, S. L. (2010). G9a and Glp methylate lysine 373 in the tumor suppressor p53. Journal of Biological Chemistry, 285(13), 9636–9641. doi:10.1074/jbc.M109.062588
  • Jacobson, M. P., Friesner, R. A., Xiang, Z., & Honig, B. (2002). On the role of the crystal environment in determining protein side-chain conformations. Journal of Molecular Biology, 320(3), 597–608. doi:10.1016/S0022-283602)00470-9
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins: Structure, Function, and Bioinformatics, 55(2), 351–367. doi:10.1002/prot.10613
  • Kesherwani, M., & Velmurugan, D. (2018). Molecular insights into substrate binding mechanism of undecaprenyl pyrophosphate with membrane integrated phosphatidyl glycerophosphate phosphatase B (PgpB) using molecular dynamics simulation approach. Journal of Biomolecular Structure and Dynamics, 1–28. doi:10.1080/07391102.2018.1449666
  • Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705. doi:10.1016/j.cell.2007.02.005
  • Kumari, R., Kumar, R., & Lynn, A. (2014). G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi:10.1021/ci500020m
  • Lee, J. S., Kim, Y., Kim, I. S., Kim, B., Choi, H. J., Lee, J. M., … Baek, S. H. (2010). Negative regulation of hypoxic responses via induced reptin methylation. Molecular Cell, 39(1), 71–85. doi:10.1016/j.molcel.2010.06.008
  • Ling, B. M. T., Bharathy, N., Chung, T.-K., Kok, W. K., Li, S., Tan, Y. H., … Taneja, R. (2012). Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America, 109(3), 841–846. doi:10.1073/pnas.1111628109
  • Liu, F., Chen, X., Allali-Hassani, A., Quinn, A. M., Wasney, G. A., Dong, A., … Jin, J. (2009). Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. Journal of Medicinal Chemistry, 52(24), 7950–7953. doi:10.1021/jm901543m
  • Liu, Q., & Wang, M. W. (2016). Histone lysine methyltransferases as anti-cancer targets for drug discovery. Acta Pharmacologica Sinica, 37, 1273–1280. doi:10.1038/aps.2016.64
  • Liu, Y., Liu, K., Qin, S., Xu, C., & Min, J. (2014). Epigenetic targets and drug discovery: Part 1: Histone methylation. Pharmacology & Therapeutics, 143(3), 275–294. doi:10.1016/j.pharmthera.2014.03.007
  • Margreitter, C., Petrov, D., & Zagrovic, B. (2013). Vienna-PTM web server: A toolkit for MD simulations of protein post-translational modifications. Nucleic Acids Research, 41(W1), W422–W426. doi:10.1093/nar/gkt416
  • Nair, S. S., Li, D. Q., & Kumar, R. (2013). A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Molecular Cell, 49(4), 704–718. doi:10.1016/j.molcel.2012.12.016
  • Nash, A., Birch, H. L., & de Leeuw, N. H. (2017). Mapping intermolecular interactions and active site conformations: From human MMP-1 crystal structure to molecular dynamics free energy calculations. Journal of Biomolecular Structure and Dynamics, 35(3), 564–573. doi:10.1080/07391102.2016.1153521
  • Peters, A. H. F. M., Kubicek, S., Mechtler, K., O’Sullivan, R. J., Derijck, A. A. H. A., Perez-Burgos, L., … Jenuwein, T. (2003). Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Molecular Cell, 12(6), 1577–1589. doi:10.1016/S1097-2765(03)00477-5
  • Pitera, J. W., Falta, M., & van Gunsteren, W. F. (2001). Dielectric properties of proteins from simulation: The effects of solvent, ligands, pH, and temperature. Biophysical Journal, 80(6), 2546–2555. doi:10.1016/S0006-3495(01)76226-1
  • Rathert, P., Dhayalan, A., Murakami, M., Zhang, X., Tamas, R., Jurkowska, R., … Jeltsch, A. (2008). Protein lysine methyltransferase G9a acts on non-histone targets. Nature Chemical Biology, 4(6), 344–346. doi:10.1038/nchembio.88
  • Rice, J. C., Briggs, S. D., Ueberheide, B., Barber, C. M., Shabanowitz, J., Hunt, D. F., … Allis, C. D. (2003). Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Molecular Cell, 12(6), 1591–1598. doi:10.1016/S1097-2765(03)00479-9
  • Rocha, R. E. O., & Lima, L. H. F. (2018). Cooperative hydrogen bonds and mobility of the non-aromatic ring as selectivity determinants for human acetylcholinesterase to similar anti-Alzheimer’s galantaminics: A computational study. Journal of Biomolecular Structure and Dynamics, 1–14. doi:10.1080/07391102.2018.1470036
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. doi:10.1016/0021-9991(77)90098-5
  • Schaefer, A., Sampath, S. C., Intrator, A., Min, A., Gertler, T. S., Surmeier, D. J., … Greengard, P. (2009). Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron, 64(5), 678–691. doi:10.1016/j.neuron.2009.11.019
  • Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G., & Rauscher, F. J. (2002). SETDB1: A novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes and Development, 16(8), 919–932. doi:10.1101/gad.973302
  • Shankar, S. R., Bahirvani, A. G., Rao, V. K., Bharathy, N., Ow, J. R., & Taneja, R. (2013). G9a, a multipotent regulator of gene expression. Epigenetics: Official Journal of the DNA Methylation Society, 8(1), 16–22. doi:10.4161/epi.23331
  • Singh, V. K., Chang, H. H., Kuo, C. C., Shiao, H. Y., Hsieh, H. P., & Coumar, M. S. (2017). Drug repurposing for chronic myeloid leukemia: In silico and in vitro investigation of DrugBank database for allosteric Bcr-Abl inhibitors. Journal of Biomolecular Structure and Dynamics, 35(8), 1833–1848. doi:10.1080/07391102.2016.1196462
  • Soares, T. A., Daura, X., Oostenbrink, C., Smith, L. J., & van Gunsteren, W. F. (2004). Validation of the GROMOS force-field parameter set 45Alpha3 against nuclear magnetic resonance data of hen egg lysozyme. Journal of Biomolecular NMR, 30(4), 407–422. doi:10.1007/s10858-004-5430-1
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate - DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409. doi:10.1021/ja981844+
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics, 22(14), 1710–1716. doi:10.1093/bioinformatics/btl150
  • Stierand, K., & Rarey, M. (2007). From modeling to medicinal chemistry: Automatic generation of two-dimensional complex diagrams. ChemMedChem, 2(6), 853–860. doi:10.1002/cmdc.200700010
  • Stierand, K., & Rarey, M. (2010). Drawing the PDB: Protein-ligand complexes in two dimensions. ACS Medicinal Chemistry Letters, 1(9), 540–545. doi:10.1021/ml100164p
  • Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41–45. doi:10.1038/47412
  • Sweis, R. F., Pliushchev, M., Brown, P. J., Guo, J., Li, F., Maag, D., … Pappano, W. N. (2014). Discovery and development of potent and selective inhibitors of histone methyltransferase g9a. ACS Medicinal Chemistry Letters, 5(2), 205–209. doi:10.1021/ml400496h
  • Trojer, P., Zhang, J., Yonezawa, M., Schmidt, A., Zheng, H., Jenuwein, T., & Reinberg, D. (2009). Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the jumonji domain-containing JMJD2/KDM4 proteins. Journal of Biological Chemistry, 284(13), 8395–8405. doi:10.1074/jbc.M807818200
  • Vedadi, M., Barsyte-Lovejoy, D., Liu, F., Rival-Gervier, S., Allali-Hassani, A., Labrie, V., … Jin, J. (2011). A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nature Chemical Biology, 7(8), 566–574. doi:10.1038/nchembio.599
  • Völkel, P., & Angrand, P. O. (2007). The control of histone lysine methylation in epigenetic regulation. Biochimie. Elsevier, 89(1), 1–20. doi:10.1016/j.biochi.2006.07.009
  • Weiss, T., Hergeth, S., Zeissler, U., Izzo, A., Tropberger, P., Zee, B. M., … Schneider, R. (2010). Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics & Chromatin, 3(1), 7. doi:10.1186/1756-8935-3-7
  • Wu, H., Min, J., Lunin, V. V., Antoshenko, T., Dombrovski, L., Zeng, H., … Schapira, M. (2010). Structural biology of human H3K9 methyltransferases. PLoS One, 5(1), e8570. doi:10.1371/journal.pone.0008570
  • Xiong, Y., Li, F., Babault, N., Dong, A., Zeng, H., Wu, H., … Jin, J. (2017). Discovery of potent and selective inhibitors for G9a-like protein (GLP) lysine methyltransferase. Journal of Medicinal Chemistry, 60(5), 1876–1891. doi:10.1021/acs.jmedchem.6b01645
  • Xiong, Y., Li, F., Babault, N., Wu, H., Dong, A., Zeng, H., … Jin, J. (2017). Structure-activity relationship studies of G9a-like protein (GLP) inhibitors. Bioorganic & Medicinal Chemistry, 25(16), 4414–4423. doi:10.1016/J.BMC.2017.06.021
  • Yu, Y., Song, C., Zhang, Q., DiMaggio, P. A., Garcia, B. A., York, A., … Grunstein, M. (2012). Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Molecular Cell, 46(1), 7–17. doi:10.1016/j.molcel.2012.01.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.