271
Views
4
CrossRef citations to date
0
Altmetric
Research Article

In silico studying of the whole protein structure and dynamics of Dickkopf family members showed that N-terminal domain of Dickkopf 2 in contrary to other Dickkopfs facilitates its interaction with low density lipoprotein receptor related protein 5/6

, , , , , & show all
Pages 2564-2580 | Received 12 Feb 2018, Accepted 04 Jun 2018, Published online: 17 Nov 2018

References

  • Aguilera, O., Fraga, M. F., Ballestar, E., Paz, M. F., Herranz, M., Espada, J., … Gonzalez-Sancho, J. M. (2006). Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene, 25(29), 4116–4121. doi:10.1038/sj.onc.1209439
  • Ahn, V. E., Chu, M. L.-H., Choi, H.-J., Tran, D., Abo, A., & Weis, W. I. (2011). Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. Developmental Cell, 21(5), 862–873. doi:10.1016/j.devcel.2011.09.003
  • Aravind, L., & Koonin, E. V. (1998). A colipase fold in the carboxy-terminal domain of the Wnt antagonists – The Dickkopfs. Current Biology, 8(14), R477–R479. doi:10.1016/S0960-9822(98)70309-4
  • Baehs, S., Herbst, A., Thieme, S. E., Perschl, C., Behrens, A., Scheel, S., … Kolligs, F. T. (2009). Dickkopf-4 is frequently down-regulated and inhibits growth of colorectal cancer cells. Cancer Letters, 276(2), 152–159. doi:10.1016/j.canlet.2008.11.003
  • Bagaria, A., Jaravine, V., Huang, Y. J., Montelione, G. T., & Güntert, P. (2012). Protein structure validation by generalized linear model root-mean-square deviation prediction. Protein Science, 21(2), 229–238. doi:10.1002/pro.2007
  • Baker, D., & Sali, A. (2001). Protein structure prediction and structural genomics. Science, 294(5540), 93–96. doi:10.1126/science.1065659
  • Berjanskii, M., Liang, Y., Zhou, J., Tang, P., Stothard, P., Zhou, Y., … Wishart, D. S. (2010). PROSESS: A protein structure evaluation suite and server. Nucleic Acids Research, 38, W633–W640. doi:10.1093/nar/gkq375
  • Bradley, P., Misura, K. M., & Baker, D. (2005). Toward high-resolution de novo structure prediction for small proteins. Science, 309(5742), 1868–1871. doi:10.1126/science.1113801
  • Brott, B. K., & Sokol, S. Y. (2002). Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Molecular and Cellular Biology, 22(17), 6100–6110. doi:10.1128/MCB.22.17.6100-6110.2002
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., … Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 66(Pt 1), 12–21. doi:10.1107/S0907444909042073
  • Cheng, Z., Biechele, T., Wei, Z., Morrone, S., Moon, R. T., Wang, L., & Xu, W. (2011). Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nature Structural & Molecular Biology, 18(11), 1204–1210. doi:10.1038/nsmb.2139
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. doi:10.1002/pro.5560020916
  • Comeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004). ClusPro: An automated docking and discrimination method for the prediction of protein complexes. Bioinformatics, 20(1), 45–50. doi:10.1093/bioinformatics/btg371
  • Daigo, Y., Sato, N., Takano, A., & Nakamura, Y. (2011). Dickkopf-1 as a biomarker and a molecular target for antibody-based cancer immunotherapy. Cancer Research, 71(8 Suppl.), 353–353. doi:10.1158/1538-7445.AM2011-353
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Diep, D. B., Hoen, N., Backman, M., Machon, O., & Krauss, S. (2004). Characterisation of the Wnt antagonists and their response to conditionally activated Wnt signalling in the developing mouse forebrain. Brain Research. Developmental Brain Research, 153(2), 261–270. doi:10.1016/j.devbrainres.2004.09.008
  • Dorn, M., e Silva, M. B., Buriol, L. S., & Lamb, L. C. (2014). Three-dimensional protein structure prediction: Methods and computational strategies. Computational Biology and Chemistry, 53(Part B), 251–276. doi:10.1016/j.compbiolchem.2014.10.001
  • Dosztányi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16), 3433–3434. doi:10.1093/bioinformatics/bti541
  • Eisenberg, D., Luthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. doi:10.1016/S0076-6879(97)77022-8
  • Fatima, S., Lee, N. P., Tsang, F. H., Kolligs, F. T., Ng, I. O., Poon, R. T., … Luk, J. M. (2012). Dickkopf 4 (DKK4) acts on Wnt/beta-catenin pathway by influencing beta-catenin in hepatocellular carcinoma. Oncogene, 31(38), 4233–4244. doi:10.1038/onc.2011.580
  • Fernandez-Fuentes, N., Rai, B. K., Madrid-Aliste, C. J., Fajardo, J. E., & Fiser, A. (2007). Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments. Bioinformatics, 23(19), 2558–2565. doi:10.1093/bioinformatics/btm377
  • Fuglebakk, E., Echave, J., & Reuter, N. (2012). Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics, 28(19), 2431–2440. doi:10.1093/bioinformatics/bts445
  • Fujii, Y., Hoshino, T., & Kumon, H. (2014). Molecular simulation analysis of the structure complex of C2 domains of DKK family members and β-propeller domains of LRP5/6: Explaining why DKK3 does not bind to LRP5/6. Acta Medica Okayama, 68(2), 63–78. doi:10.18926/AMO/52403
  • Giles, R. H., van Es, J. H., & Clevers, H. (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1653(1), 1–24. doi:10.1016/S0304-419X(03)00005-2
  • Hardin, C., Pogorelov, T. V., & Luthey-Schulten, Z. (2002). Ab initio protein structure prediction. Current Opinion in Structural Biology, 12(2), 176–181. doi:10.1016/S0959-440X(02)00306-8
  • He, X., Semenov, M., Tamai, K., & Zeng, X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development, 131(8), 1663–1677. doi:10.1242/dev.01117
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41, W384–W388. doi:10.1093/nar/gkt458
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hirata, H., Hinoda, Y., Nakajima, K., Kawamoto, K., Kikuno, N., Kawakami, K., … Dahiya, R. (2009). Wnt antagonist gene DKK2 is epigenetically silenced and inhibits renal cancer progression through apoptotic and cell cycle pathways. Clinical Cancer Research, 15(18), 5678–5687. doi:10.1158/1078-0432.ccr-09-0558
  • Hsieh, S. Y., Hsieh, P. S., Chiu, C. T., & Chen, W. Y. (2004). Dickkopf-3/REIC functions as a suppressor gene of tumor growth. Oncogene, 23(57), 9183–9189. doi:10.1038/sj.onc.1208138
  • Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. Journal of Biochemistry, 88(6), 1895–1898. doi:10.1093/oxfordjournals.jbchem.a133168
  • Jangholi, A., Ashrafi-Kooshk, M. R., Arab, S. S., Karima, S., Poorebrahim, M., Ghadami, S. A., … Khodarahmi, R. (2018). Can any “non-specific charge modification within microtubule binding domains of Tau” be a prerequisite of the protein amyloid aggregation? An in vitro study on the 1N4R isoform. International Journal of Biological Macromolecules, 109, 188–204. doi:10.1016/j.ijbiomac.2017.12.071
  • Jaroszewski, L., Rychlewski, L., Li, Z., Li, W., & Godzik, A. (2005). FFAS03: A server for profile–profile sequence alignments. Nucleic Acids Research, 33, W284–W288. doi:10.1093/nar/gki418
  • Jo, S., Vargyas, M., Vasko-Szedlar, J., Roux, B., & Im, W. (2008). PBEQ-Solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Research, 36(Suppl. 2), W270–W275. doi:10.1093/nar/gkn314
  • Johnson, M. S., Srinivasan, N., Sowdhamini, R., & Blundell, T. L. (1994). Knowledge-based protein modeling. Critical Reviews in Biochemistry and Molecular Biology, 29(1), 1–68. doi:10.3109/10409239409086797
  • Jones, D., Bryson, K., Coleman, A., McGuffin, L. J., Sadowski, M., Sodhi, J., & Ward, J. (2005). Prediction of novel and analogous folds using fragment assembly and fold recognition. Proteins: Structure, Function, and Bioinformatics, 61(S7), 143–151. doi:10.1002/prot.20731
  • Kalman, M., & Ben-Tal, N. (2010). Quality assessment of protein model-structures using evolutionary conservation. Bioinformatics, 26(10), 1299–1307. doi:10.1093/bioinformatics/btq114
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845. doi:10.1038/nprot.2015.053
  • Ko, J., Park, H., & Seok, C. (2012). GalaxyTBM: Template-based modeling by building a reliable core and refining unreliable local regions. BMC Bioinformatics, 13(1), 198. doi:10.1186/1471-2105-13-198
  • Kortemme, T., Kim, D. E., & Baker, D. (2004). Computational alanine scanning of protein–protein interfaces. Sci STKE, 2004(219), pl2. doi:10.1126/stke.2192004pl2
  • Kosciolek, T., Buchan, D. W., & Jones, D. T. (2017). Predictions of backbone dynamics in intrinsically disordered proteins using de novo fragment-based protein structure predictions. Scientific Reports, 7(1), 6999. doi:10.1038/s41598-017-07156-1
  • Krupnik, V. E., Sharp, J. D., Jiang, C., Robison, K., Chickering, T. W., Amaravadi, L., … Leiby, K. (1999). Functional and structural diversity of the human Dickkopf gene family. Gene, 238(2), 301–313. doi:10.1016/S0378-1119(99)00365-0
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. doi:10.1093/molbev/msw054
  • Kumar, S., Tsai, C.-J., & Nussinov, R. (2000). Factors enhancing protein thermostability. Protein Engineering, Design and Selection, 13(3), 179–191. doi:10.1093/protein/13.3.179
  • Kumwenda, B., Litthauer, D., Bishop, Ö. T., & Reva, O. (2013). Analysis of protein thermostability enhancing factors in industrially important thermus bacteria species. Evolutionary Bioinformatics Online, 9, 327–342. doi:10.4137/EBO.S12539
  • Kuphal, S., Lodermeyer, S., Bataille, F., Schuierer, M., Hoang, B. H., & Bosserhoff, A. K. (2006). Expression of Dickkopf genes is strongly reduced in malignant melanoma. Oncogene, 25(36), 5027–5036. doi:10.1038/sj.onc.1209508
  • Kurose, K., Sakaguchi, M., Nasu, Y., Ebara, S., Kaku, H., Kariyama, R., … Huh, N. H. (2004). Decreased expression of REIC/Dkk-3 in human renal clear cell carcinoma. Journal of Urology, 171(3), 1314–1318. doi:10.1097/01.ju.0000101047.64379.d4
  • Larkin, M. A., Blackshields, G., Brown, N., Chenna, R., McGettigan, P. A., McWilliam, H., … Lopez, R. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. doi:10.1093/bioinformatics/btm404
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. doi:10.1021/ci200227u
  • Maehata, T., Taniguchi, H., Yamamoto, H., Nosho, K., Adachi, Y., Miyamoto, N., … Itoh, F. (2008). Transcriptional silencing of Dickkopf gene family by CpG island hypermethylation in human gastrointestinal cancer. World Journal of Gastroenterology: WJG, 14(17), 2702. doi:10.3748/wjg.14.2702
  • Marks, D. S., Hopf, T. A., & Sander, C. (2012). Protein structure prediction from sequence variation. Nature Biotechnology, 30(11), 1072–1080. doi:10.1038/nbt.2419
  • Mikheev, A. M., Mikheeva, S. A., Liu, B., Cohen, P., & Zarbl, H. (2004). A functional genomics approach for the identification of putative tumor suppressor genes: Dickkopf-1 as suppressor of HeLa cell transformation. Carcinogenesis, 25(1), 47–59. doi:10.1093/carcin/bgg190
  • Moskalev, E. A., Luckert, K., Vorobjev, I. A., Mastitsky, S. E., Gladkikh, A. A., Stephan, A., … Pötz, O. (2012). Concurrent epigenetic silencing of wnt/β-catenin pathway inhibitor genes in B cell chronic lymphocytic leukaemia. BMC Cancer, 12(1), 213. doi:10.1186/1471-2407-12-213
  • Niehrs, C. (2006). Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene, 25(57), 7469–7481. doi:10.1038/sj.onc.1210054
  • Polo, A., Colonna, G., Guariniello, S., Ciliberto, G., & Costantini, S. (2016). Deducing the functional characteristics of the human selenoprotein SELK from the structural properties of its intrinsically disordered C-terminal domain. Molecular BioSystems, 12(3), 758–772. doi:10.1039/c5mb00679a
  • Poorebrahim, M., Sadeghi, S., Rahimi, H., Karimipoor, M., Azadmanesh, K., Mazlomi, M. A., & Teimoori-Toolabi, L. (2017). Rational design of DKK3 structure-based small peptides as antagonists of Wnt signaling pathway and in silico evaluation of their efficiency. PLoS One, 12(2), e0172217. doi:10.1371/journal.pone.0172217
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … van der Spoel, D. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, btt055.
  • Russell, R. J., Hough, D. W., Danson, M. J., & Taylor, G. L. (1994). The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure, 2(12), 1157–1167. doi:10.1016/S0969-2126(94)00118-9
  • Sato, H., Suzuki, H., Toyota, M., Nojima, M., Maruyama, R., Sasaki, S., … Shinomura, Y. (2007). Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis, 28(12), 2459–2466. doi:10.1093/carcin/bgm178
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. doi:10.1093/nar/gkg520
  • Semënov, M. V., Tamai, K., Brott, B. K., Kühl, M., Sokol, S., & He, X. (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Current Biology, 11(12), 951–961. doi:10.1016/S0960-9822(01)00290-1
  • Slabinski, L., Jaroszewski, L., Rychlewski, L., Wilson, I. A., Lesley, S. A., & Godzik, A. (2007). XtalPred: A web server for prediction of protein crystallizability. Bioinformatics, 23(24), 3403–3405. doi:10.1093/bioinformatics/btm477
  • Söding, J., Biegert, A., & Lupas, A. N. (2005). The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research, 33(suppl 2), W244–W248. doi:10.1093/nar/gki408
  • Urakami, S., Shiina, H., Enokida, H., Kawakami, T., Kawamoto, K., Hirata, H., … Igawa, M. (2006). Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection. Clinical Cancer Research, 12(7), 2109–2116. doi:10.1158/1078-0432.CCR-05-2468
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., … Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. doi:10.1016/j.jmb.2015.09.014
  • Veeck, J., & Dahl, E. (2012). Targeting the Wnt pathway in cancer: The emerging role of Dickkopf-3. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1825(1), 18–28. doi:10.1016/j.bbcan.2011.09.003
  • Wang, K., Zhang, Y., Li, X., Chen, L., Wang, H., Wu, J., … Wu, D. (2008). Characterization of the Kremen-binding site on Dkk1 and elucidation of the role of Kremen in Dkk-mediated Wnt antagonism. Journal of Biological Chemistry, 283(34), 23371–23375. doi:10.1074/jbc.M802376200
  • Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F., & Jones, D. T. (2004). The DISOPRED server for the prediction of protein disorder. Bioinformatics, 20(13), 2138–2139. doi:10.1093/bioinformatics/bth195
  • Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview Version 2 – A multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189–1191. doi:10.1093/bioinformatics/btp033
  • Webb, B., & Sali, A. (2014). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, 47, 5.6.1–5.6.32. doi:10.1002/0471250953.bi0506s47
  • Wells, J. A., & McClendon, C. L. (2007). Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature, 450(7172), 1001–1009. doi:10.1038/nature06526
  • White, B. D., Chien, A. J., & Dawson, D. W. (2012). Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology, 142(2), 219–232. doi:10.1053/j.gastro.2011.12.001
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Suppl. 2), W407–W410. doi:10.1093/nar/gkm290
  • Willard, L., Ranjan, A., Zhang, H., Monzavi, H., Boyko, R. F., Sykes, B. D., & Wishart, D. S. (2003). VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Research, 31(13), 3316–3319. doi:10.1093/nar/gkg565
  • Xiang, Z. (2006). Advances in homology protein structure modeling. Current Protein and Peptide Science, 7(3), 217–227. doi:10.2174/138920306777452312
  • Xu, D., Tsai, C.-J., & Nussinov, R. (1997). Hydrogen bonds and salt bridges across protein–protein interfaces. Protein Engineering, 10(9), 999–1012. doi:10.1093/protein/10.9.999
  • Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 40. doi:10.1186/1471-2105-9-40
  • Zhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. doi:10.1093/nar/gki524
  • Zhu, J., Zhang, S., Gu, L., & Di, W. (2012). Epigenetic silencing of DKK2 and Wnt signal pathway components in human ovarian carcinoma. Carcinogenesis, 33(12), 2334–2343. doi:10.1093/carcin/bgs278

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.