239
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Prediction of matrix metal proteinases-12 inhibitors by machine learning approaches

, , , , , , & show all
Pages 2627-2640 | Received 02 Apr 2018, Accepted 10 Jun 2018, Published online: 24 Dec 2018

References

  • Amar, S., & Fields, G. B. (2015). Potential clinical implications of recent matrix metalloproteinase inhibitor design strategies. Expert Review of Proteomics, 12(5), 445–447. doi: 10.1586/14789450.2015.1069190
  • Ando, N., & Terashima, S. (2007). Synthesis and matrix metalloproteinase (MMP)-12 inhibitory activity of ageladine A and its analogs. Bioorganic & Medicinal Chemistry Letters, 17(16), 4495–4499. doi: https://doi.org/10.1016/j.bmcl.2007.06.005
  • Ando, N., & Terashima, S. (2009). Synthesis of novel ageladine A analogs showing more potent matrix metalloproteinase (MMP)-12 inhibitory activity than the natural product. Bioorganic & Medicinal Chemistry Letters, 19(18), 5461–5463. doi: https://doi.org/10.1016/j.bmcl.2009.07.099
  • Balaz, P., Friess, H., Kondo, Y., Zhu, Z., Zimmermann, A., & Büchler, M. W. (2002). Human macrophage metalloelastase worsens the prognosis of pancreatic cancer. Annals of Surgery, 235(4), 519–527
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. doi: 10.1023/a:1010933404324
  • Burkert., U., & Allinger, N. L. (1982). ACS monograph: Molecular mechanics. Washington, DC: American Chemical Society.
  • Cartier, A., & Rivail, J. L. (1987). Electronic descriptors in quantitative structure—Activity relationships. Chemometrics and Intelligent Laboratory Systems, 1(4), 335–347. doi: https://doi.org/10.1016/0169-7439(87)80039-4
  • Chelluboina, B., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., Vemuganti, R., & Veeravalli, K. K. (2015). Matrix metalloproteinase-12 induces blood–brain barrier damage after focal cerebral ischemia. Stroke, 46(12), 3523–3531. doi: 10.1161/strokeaha.115.011031
  • Chelluboina, B., Nalamolu, K. R., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., Vemuganti, R., & Veeravalli, K. K. (2018). MMP-12, a promising therapeutic target for neurological diseases. Molecular Neurobiology, 55(2), 1405–1409. doi: 10.1007/s12035-017-0418-5
  • Chiba, Y., Yu, Y., Sakai, H., & Misawa, M. (2007). Increase in the expression of matrix metalloproteinase-12 in the airways of rats with allergic bronchial asthma. Biological & Pharmaceutical Bulletin, 30(2), 318–323
  • Cong, Y., Yang, X.-g., Lv, W., & Xue, Y. (2009). Prediction of novel and selective TNF-alpha converting enzyme (TACE) inhibitors and characterization of correlative molecular descriptors by machine learning approaches. Journal of Molecular Graphics and Modelling, 28(3), 236–244. doi: https://doi.org/10.1016/j.jmgm.2009.08.001
  • Corina (Version 3.4). (2006). Germany: Molecular Networks GmbH-Computerchemie.
  • Curci, J. A., Liao, S., Huffman, M. D., Shapiro, S. D., & Thompson, R. W. (1998). Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. The Journal of Clinical Investigation, 102(11), 1900–1910. doi: 10.1172/JCI2182
  • Devel, L., Czarny, B., Beau, F., Georgiadis, D., Stura, E., & Dive, V. (2010). Third generation of matrix metalloprotease inhibitors: Gain in selectivity by targeting the depth of the S1′ cavity. Biochimie, 92(11), 1501–1508. doi: https://doi.org/10.1016/j.biochi.2010.07.017
  • Devel, L., Garcia, S., Czarny, B., Beau, F., Lajeunesse, E., Vera, L., …, Dive, V. (2010). Insights from selective non-phosphinic inhibitors of MMP-12 tailored to fit with an S1′ loop canonical conformation. Journal of Biological Chemistry, 285(46), 35900–35909. doi: 10.1074/jbc.M110.139634
  • Devel, L., Rogakos, V., David, A., Makaritis, A., Beau, F., Cuniasse, P., …, Dive, V. (2006). Development of selective inhibitors and substrate of matrix metalloproteinase-12. Journal of Biological Chemistry, 281(16), 11152–11160. doi: 10.1074/jbc.M600222200
  • Dhanabal, S., & Chandramathi, S. (2011). A review of various k-nearest neighbor query processing techniques. International Journal of Computer Applications, 31(7), 14–22
  • Ding, Y., Shimada, Y., Gorrin-Rivas, M. J., Itami, A., Li, Z., Hong, T., … Imamura, M. (2002). Clinicopathological significance of human macrophage metalloelastase expression in esophageal squamous cell carcinoma. Oncology, 63(4), 378–384
  • Discovery Studio Modeling Environment (Version 3.5). (2005). San Diego, CA, USA: Accelrys Software Inc.
  • Dublanchet, A.-C., Ducrot, P., Andrianjara, C., O’Gara, M., Morales, R., Compère, D., … Tertre, A. (2005). Structure-based design and synthesis of novel non-zinc chelating MMP-12 inhibitors. Bioorganic & Medicinal Chemistry Letters, 15(16), 3787–3790. doi: https://doi.org/10.1016/j.bmcl.2005.05.079
  • Fabre, B., Ramos, A., & de Pascual-Teresa, B. (2014). Targeting matrix metalloproteinases: exploring the dynamics of the S1′ pocket in the design of selective, small molecule inhibitors. Journal of Medicinal Chemistry, 57(24), 10205–10219. doi: 10.1021/jm500505f
  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. doi: https://doi.org/10.1016/j.patrec.2005.10.010
  • Gunda, S. K., Akula, L. K., Shaik, S., Bandi, S., & Shaik, M. (2015). Molecular docking and 3D-QSAR analysis studies of MMP-12 inhibitors. International Journal of Pharmaceutical Sciences and Research, 6(5), 2019–2027.
  • Gupta, S. P., & Patil, V. M. (2012). Specificity of binding with matrix metalloproteinases. In S. P. Gupta (Ed.), Matrix metalloproteinase inhibitors: Specificity of binding and structure activity relationships (pp. 35–56). Basel: Springer Basel.
  • Hadizadeh, F., & Shamsara, J. (2015). Receptor-based 3D-QSAR approach to find selectivity features of flexible similar binding sites: case study on MMP-12/MMP-13. International Journal of Bioinformatics Research and Applications, 11(4), 326–346. doi: 10.1504/ijbra.2015.070139
  • Hall, L. H., & Kier, L. B. (1995). Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information. Journal of Chemical Information and Computer Sciences, 35(6), 1039–1045
  • Hall, L. H., & Kier, L. B. (2007). The molecular connectivity chi indexes and kappa shape indexes in structure-property modeling. In K. B. Lipkowitz & D. B. Boyd (Eds.), Reviews in computational Chemistry (II ed., pp. 367–422). New York: Wiley.
  • Hautamaki, R. D., Kobayashi, D. K., Senior, R. M., & Shapiro, S. D. (1997). Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science, 277(5334), 2002–2004. doi: 10.1126/science.277.5334.2002
  • Hitaoka, S., Chuman, H., & Yoshizawa, K. (2015). A QSAR study on the inhibition mechanism of matrix metalloproteinase-12 by arylsulfone analogs based on molecular orbital calculations. Organic & Biomolecular Chemistry, 13(3), 793–806. doi: 10.1039/C4OB01843E
  • Hofmann, H.-S., Hansen, G., Richter, G., Taege, C., Simm, A., Silber, R.-E., & Burdach, S. (2005). Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non–small cell lung cancer patients. Clinical Cancer Research, 11(3), 1086–1092.
  • Holmes, I. P., Gaines, S., Watson, S. P., Lorthioir, O., Walker, A., Baddeley, S. J., … Martin, S. L. (2009). The identification of β-hydroxy carboxylic acids as selective MMP-12 inhibitors. Bioorganic & Medicinal Chemistry Letters, 19(19), 5760–5763. doi: https://doi.org/10.1016/j.bmcl.2009.07.155
  • Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. doi: https://doi.org/10.1016/j.patrec.2009.09.011
  • Jiang, M.-N., Zhou, X.-P., Sun, D.-R., Gao, H., Zheng, Q.-C., Zhang, H.-X., & Liang, D. (2017). 2D-QSAR study, molecular docking, and molecular dynamics simulation studies of interaction mechanism between inhibitors and transforming growth factor-beta receptor I (ALK5). Journal of Biomolecular Structure and Dynamics, 1–13. doi: 10.1080/07391102.2017.1396256
  • Johnson, J. L., Devel, L., Czarny, B., George, S. J., Jackson, C. L., Rogakos, V., … Dive, V. (2011). A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E–knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(3), 528–535. doi: 10.1161/atvbaha.110.219147
  • Johnson, J. L., George, S. J., Newby, A. C., & Jackson, C. L. (2005). Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proceedings of the National Academy of Sciences, 102(43), 15575–15580. doi: 10.1073/pnas.0506201102
  • Johnson, M., & Maggiora, G. (Eds.). (1990). Concepts and applications of molecular similarity. New York: Wiley.
  • Kamath, V., & Pai, A. (2017). Application of molecular descriptors in modern computational drug design–An overview. Research Journal of Pharmacy and Technology, 10(9), 3237–3241.
  • Kaneko, Y., Sakatsume, M., Xie, Y., Kuroda, T., Igashima, M., Narita, I., & Gejyo, F. (2003). Macrophage metalloelastase as a major factor for glomerular injury in anti-glomerular basement membrane nephritis. The Journal of Immunology, 170(6), 3377–3385. doi: 10.4049/jimmunol.170.6.3377
  • Karelson, M., Lobanov, V. S., & Katritzky, A. R. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 96(3), 1027–1044. doi: 10.1021/cr950202r
  • Kerkelä, E., Ala-aho, R., Jeskanen, L., Rechardt, O., Grénman, R., Shapiro, S. D., … Saarialho-Kere, U. (2000). Expression of human macrophage metalloelastase (mmp-12) by tumor cells in skin cancer. Journal of Investigative Dermatology, 114(6), 1113–1119. doi: https://doi.org/10.1046/j.1523-1747.2000.00993.x
  • Lagente, V., Le Quement, C., & Boichot, E. (2009). Macrophage metalloelastase (MMP-12) as a target for inflammatory respiratory diseases. Expert Opinion on Therapeutic Targets, 13(3), 287–295. doi: 10.1517/14728220902751632
  • Lavecchia, A. (2015). Machine-learning approaches in drug discovery: Methods and applications. Drug Discovery Today, 20(3), 318–331. doi: https://doi.org/10.1016/j.drudis.2014.10.012
  • Lei, T., Sun, H., Kang, Y., Zhu, F., Liu, H., Zhou, W., … Hou, T. (2017). ADMET evaluation in drug discovery. 18. Reliable prediction of chemical-induced urinary tract toxicity by boosting machine learning approaches. Molecular Pharmaceutics, 14(11), 3935–3953. doi: 10.1021/acs.molpharmaceut.7b00631
  • Li, B.-K., Cong, Y., Yang, X.-G., Xue, Y., & Chen, Y.-Z. (2013). In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method. Computers in Biology and Medicine, 43(4), 395–404. doi: https://doi.org/10.1016/j.compbiomed.2013.01.015
  • Li, B.-K., He, B., Tian, Z.-Y., Chen, Y.-Z., & Xue, Y. (2015). Modeling, predicting and virtual screening of selective inhibitors of MMP-3 and MMP-9 over MMP-1 using random forest classification. Chemometrics and Intelligent Laboratory Systems, 147, 30–40. doi: https://doi.org/10.1016/j.chemolab.2015.07.014
  • Li, W., Li, J., Wu, Y., Rancati, F., Vallese, S., Raveglia, L., … Mansour, T. S. (2009). Identification of an orally efficacious matrix metalloprotease 12 inhibitor for potential treatment of asthma. Journal of Medicinal Chemistry, 52(17), 5408–5419. doi: 10.1021/jm900809r
  • Li, W., Li, J., Wu, Y., Wu, J., Hotchandani, R., Cunningham, K., … Mansour, T. S. (2009). A selective matrix metalloprotease 12 inhibitor for potential treatment of chronic obstructive pulmonary disease (COPD): Discovery of (S)-2-(8-(methoxycarbonylamino)dibenzo[b,d]furan-3-sulfonamido)-3-methylbutanoic acid (MMP408). Journal of Medicinal Chemistry, 52(7), 1799–1802. doi: 10.1021/jm900093d
  • Liang, J., Liu, E., Yu, Y., Kitajima, S., Koike, T., Jin, Y., … Fan, J. (2006). Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits. Circulation, 113(16), 1993–2001. doi: 10.1161/circulationaha.105.596031
  • Liu, M., Sun, H., Wang, X., Koike, T., Mishima, H., Ikeda, K., … Fan, J. (2004). Association of increased expression of macrophage elastase (matrix metalloproteinase 12) with rheumatoid arthritis. Arthritis & Rheumatism, 50(10), 3112–3117. doi: 10.1002/art.20567
  • Lixia, S., Hongbin, Y., Jie, L., Tianduanyi, W., Weihua, L., Guixia, L., & Yun, T. (2018). In silico prediction of compounds binding to human plasma proteins by QSAR models. ChemMedChem, 13(6), 572–581. doi: 10.1002/cmdc.201700582
  • Macalino, S. J. Y., Gosu, V., Hong, S., & Choi, S. (2015). Role of computer-aided drug design in modern drug discovery. Archives of Pharmacal Research, 38(9), 1686–1701. doi: 10.1007/s12272-015-0640-5
  • Maestro (Version 10.2.010). (2015). New York, NY, USA: Schrödinger, LLC.
  • Mannino, C., Nievo, M., Machetti, F., Papakyriakou, A., Calderone, V., Fragai, M., & Guarna, A. (2006). Synthesis of bicyclic molecular scaffolds (BTAa): An investigation towards new selective MMP-12 inhibitors. Bioorganic & Medicinal Chemistry, 14(22), 7392–7403. doi: https://doi.org/10.1016/j.bmc.2006.07.028
  • Matsumoto, S.-I., Kobayashi, T., Katoh, M., Saito, S., Ikeda, Y., Kobori, M., … Watanabe, T. (1998). Expression and localization of matrix metalloproteinase-12 in the aorta of cholesterol-fed rabbits: Relationship to lesion development. The American Journal of Pathology, 153(1), 109–119. doi: https://doi.org/10.1016/S0002-9440(10)65551-4
  • Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2), 442–451. doi: https://doi.org/10.1016/0005-2795(75)90109-9
  • MOE (The Molecular Operating Environment) (Version 2009). (2009). Montreal, Quebec, Canada: Chemical Computing Group Inc.
  • Molet, S., Belleguic, C., Lena, H., Germain, N., Bertrand, C. P., Shapiro, S. D., … Lagente, V. (2005). Increase in macrophage elastase (MMP-12) in lungs from patients with chronic obstructive pulmonary disease. Inflammation Research, 54(1), 31–36. doi: 10.1007/s00011-004-1319-4
  • Morales, R., Perrier, S., Florent, J.-M., Beltra, J., Dufour, S., De Mendez, I., … O'Gara, M. (2004). Crystal structures of novel non-peptidic, non-zinc chelating inhibitors bound to MMP-12. Journal of Molecular Biology, 341(4), 1063–1076. doi: https://doi.org/10.1016/j.jmb.2004.06.039
  • Nabha, S. M., dos Santos, E. B., Yamamoto, H. A., Belizi, A., Dong, Z., Meng, H., … Cher, M. L. (2008). Bone marrow stromal cells enhance prostate cancer cell invasion through type I collagen in an MMP-12 dependent manner. International Journal of Cancer, 122(11), 2482–2490. doi: 10.1002/ijc.23431
  • Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69(3), 562–573. doi: 10.1016/j.cardiores.2005.12.002
  • Nar, H., Werle, K., Bauer, M. M. T., Dollinger, H., & Jung, B. (2001). Crystal structure of human macrophage elastase (MMP-12) in complex with a hydroxamic acid inhibitor. Journal of Molecular Biology, 312(4), 743–751. doi: 10.1006/jmbi.2001.4953
  • Nordström, H., Gossas, T., Hämäläinen, M., Källblad, P., Nyström, S., Wallberg, H., & Danielson, U. H. (2008). Identification of MMP-12 inhibitors by using biosensor-based screening of a fragment library. Journal of Medicinal Chemistry, 51(12), 3449–3459. doi: 10.1021/jm8000289
  • Nuti, E., Cuffaro, D., D’Andrea, F., Rosalia, L., Tepshi, L., Fabbi, M., … Rossello, A. (2016). Sugar-based arylsulfonamide carboxylates as selective and water-soluble matrix metalloproteinase-12 inhibitors. ChemMedChem, 11(15), 1626–1637. doi: 10.1002/cmdc.201600235
  • Nuti, E., Panelli, L., Casalini, F., Avramova, S. I., Orlandini, E., Santamaria, S., … Rossello, A. (2009). Design, synthesis, biological evaluation, and NMR studies of a new series of arylsulfones as selective and potent matrix metalloproteinase-12 Inhibitors. Journal of Medicinal Chemistry, 52(20), 6347–6361. doi: 10.1021/jm900335a
  • Pirard, B. (2007). Insight into the structural determinants for selective inhibition of matrix metalloproteinases. Drug Discovery Today, 12(15), 640–646. doi: https://doi.org/10.1016/j.drudis.2007.06.003
  • Rodríguez-Pla, A., Martínez-Murillo, F., Savino, P. J., Eagle, J. R. C., Seo, P., & Soloski, M. J. (2009). MMP-12, a novel matrix metalloproteinase associated with giant cell arteritis. Rheumatology, 48(11), 1460–1461. doi: 10.1093/rheumatology/kep271
  • Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees classifiers—A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(4), 476–487. doi:10.1109/TSMCC.2004.843247
  • Sarkar, S., Nuttall, R. K., Liu, S., Edwards, D. R., & Yong, V. W. (2006). Tenascin-C stimulates glioma cell invasion through matrix metalloproteinase-12. Cancer Research, 66(24), 11771–11780. doi: 10.1158/0008-5472.Can-05-0470
  • Shamsara, J., & Shahir-Sadr, A. (2014). A predictive HQSAR model for a series of tricycle core containing MMP-12 inhibitors with dibenzofuran ring. International Journal of Medicinal Chemistry, 2014, 1–9
  • Shapiro, S. D., Kobayashi, D. K., & Ley, T. J. (1993). Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. Journal of Biological Chemistry, 268(32), 23824–23829.
  • Singh, U., Gangwal, R. P., Prajapati, R., Dhoke, G. V., & Sangamwar, A. T. (2013). 3D QSAR pharmacophore-based virtual screening and molecular docking studies to identify novel matrix metalloproteinase 12 inhibitors. Molecular Simulation, 39(5), 385–396. doi: 10.1080/08927022.2012.731506
  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. doi: 10.1124/pr.112.007336
  • Terfloth, L., Spycher, S., & Gasteiger, J. (2018). Drug discovery: An overview. In E. Thomas & J. Gasteiger (Eds.), Applied chemoinformatics: Achievements and future opportunities. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., … Prokopenko, V. V. (2005). Virtual computational chemistry laboratory—Design and description. Journal of Computer-Aided Molecular Design, 19(6), 453–463. doi: 10.1007/s10822-005-8694-y
  • Todeschini, R., & Consonni, V. (2008). Handbook of Molecular Descriptors (Vol. 11): Weinheim, Germany: John Wiley & Sons.
  • Vaalamo, M., Kariniemi, A.-L., Saarialho-Kere, U., & Shapiro, S. D. (1999). Enhanced expression of human metalloelastase (MMP-12) in cutaneous granulomas and macrophage migration. Journal of Investigative Dermatology, 112(4), 499–505. doi: https://doi.org/10.1046/j.1523-1747.1999.00547.x
  • Vapnik, V. N. (2000). The vicinal risk minimization principle and the SVMs. In V. N. Vapnik (Ed.), The nature of statistical learning theory (pp. 267–290). New York, NY: Springer New York.
  • Verma, R. P., & Hansch, C. (2007). Matrix metalloproteinases (MMPs): Chemical–biological functions and (Q)SARs. Bioorganic & Medicinal Chemistry, 15(6), 2223–2268. doi: https://doi.org/10.1016/j.bmc.2007.01.011
  • Vos, C. M. P., van Haastert, E. S., de Groot, C. J. A., van der Valk, P., & de Vries, H. E. (2003). Matrix metalloproteinase-12 is expressed in phagocytotic macrophages in active multiple sclerosis lesions. Journal of Neuroimmunology, 138(1), 106–114. doi: 10.1016/S0165-5728(03)00036-5
  • Wei, Y. C. (2011). PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7), 1466–1474. doi: 10.1002/jcc.21707
  • Wells, J. E. A., Biernaskie, J., Szymanska, A., Larsen, P. H., Yong, V. W., & Corbett, D. (2005). Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. European Journal of Neuroscience, 21(1), 187–196. doi: 10.1111/j.1460-9568.2004.03829.x
  • Wells, J. E. A., Rice, T. K., Nuttall, R. K., Edwards, D. R., Zekki, H., Rivest, S., & Yong, V. W. (2003). An adverse role for matrix metalloproteinase 12 after spinal cord injury in mice. Journal of Neuroscience, 23(31), 10107–10115
  • Werb, Z., & Gordon, S. (1975). Elastase secretion by stimulated macrophages. Characterization and regulation. Journal of Experimental Medicine, 142(2), 361–377. doi: 10.1084/jem.142.2.361
  • Whittaker, M., Floyd, C. D., Brown, P., & Gearing, A. J. H. (1999). Design and therapeutic application of matrix metalloproteinase inhibitors. Chemical Reviews, 99(9), 2735–2776. doi: 10.1021/cr9804543
  • Willett, P., Barnard, J. M., & Downs, G. M. (1998). Chemical similarity searching. Journal of Chemical Information and Computer Sciences, 38(6), 983–996. doi: 10.1021/ci9800211
  • Xue, Y., Yap, C. W., Sun, L. Z., Cao, Z. W., Wang, J. F., & Chen, Y. Z. (2004). Prediction of P-glycoprotein substrates by a support vector machine approach. Journal of Chemical Information and Computer Sciences, 44(4), 1497–1505. doi: 10.1021/ci049971e
  • Yang, X. G., Lv, W., Chen, Y. Z., & Xue, Y. (2010). In silico prediction and screening of γ-secretase inhibitors by molecular descriptors and machine learning methods. Journal of Computational Chemistry, 31(6), 1249–1258. doi: 10.1002/jcc.21411

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.