323
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Proteomics analysis of two heat shock proteins in insects

ORCID Icon
Pages 2652-2668 | Received 21 Mar 2018, Accepted 12 Jun 2018, Published online: 17 Nov 2018

References

  • Arbeitman, M. N., & Hogness, D. S. (2000). Molecular chaperones activate the Drosophila ecdysone receptor, an RXR heterodimer. Cell, 101(1), 67–77.
  • Aruda, A. M., Baumgartner, M. F., Reitzel, A. M., & Tarrant, A. M. (2011). Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. Journal of Insect Physiology, 57(5), 665–675.
  • Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., … Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, gkp335.
  • Bailey, T. L., & Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in bipolymers. In Proceeding of the second International Conference on Intelligent Systems for Molecular Biology, Stanford, California, 2, 28–36.
  • Beato, M., & Klug, J. (2000). Steroid hormone receptors: An update. Human Reproduction Update, 6(3), 225–236.
  • Benoit, J. B., Lopez-Martinez, G., Patrick, K. R., Phillips, Z. P., Krause, T. B., & Denlinger, D. L. (2011). Drinking a hot blood meal elicits a protective heat shock response in mosquitoes. Proceedings of the National Academy of Sciences, 108(19), 8026–8029.
  • Benoit, J. B., Lopez-Martinez, G., Phillips, Z. P., Patrick, K. R., & Denlinger, D. L. (2010). Heat shock proteins contribute to mosquito dehydration tolerance. Journal of Insect Physiology, 56(2), 151–156.
  • Bijlsma, R., & Loeschcke, V. (1997). Stress, Adaptation, and Evolution. Basle: Birkhäuser.
  • Blackstock, W. P., & Weir, M. P. (1999). Proteomics: Quantitative and physical mapping of cellular proteins. Trends in Biotechnology, 17(3), 121–127.
  • Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F. X., & Kiefhaber, T. (1991). GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry, 30(6), 1586–1591.
  • Chandrasekhar, K., Dileep, A., Ester Lebonah, D., & Pramoda Kumari, J. (2014). A short review on proteomics and its applications. International Letters of Natural Sciences, 17, 77–84.
  • Colinet, H., Lee, S. F., & Hoffmann, A. (2010). Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. The FEBS Journal, 277(1), 174–185.
  • Colinet, H., Siaussat, D., Bozzolan, F., & Bowler, K. (2013). Rapid decline of cold tolerance at young age is associated with expression of stress genes in Drosophila melanogaster. Journal of Experimental Biology, 216(2), 253–259.
  • Combet, C., Blanchet, C., Geourjon, C., & Deleage, G. (2000). NPS@: Network protein sequence analysis. Trends in Biochemical Sciences, 25(3), 147–150.
  • Darabi, M., & Farhadi-Nejad, H. (2013). Study of the 3-hydroxy-3-methylglotaryl-coenzyme A reductase (HMGR) protein in Rosaceae by bioinformatics tools. Caryologia, 66(4), 351–359.
  • Darabi, M., & Seddigh, S. (2015). Bioinformatic characterization of aspartic protease (AP) enzyme in seed plants. Plant Systematics and Evolution, 301(10), 2399–2417.
  • Darabi, M., & Seddigh, S. (2017). Computational study of biochemical properties of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) enzyme in C3 plants. Journal of Plant Biology, 60(1), 35–47.
  • Darabi, M., & Seddigh, S. (2018). Structural, functional, and phylogenetic characterization of phosphoenolpyruvate carboxylase (PEPC) in C4 and CAM plants. Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics. doi:10.1080/00087114.2018.1465762.
  • Darabi, M., Seddigh, S., & Abarshahr, M. (2017). Structural, functional, and phylogenetic studies of cytochrome P450 (CYP) enzyme in seed plants by bioinformatics tools. Caryologia, 70(1), 62–76.
  • Datkhile, K. D., Mukhopadhyaya, R., Dongre, T. K., & Nath, B. B. (2011). Hsp70 expression in Chironomus ramosus exposed to gamma radiation. International Journal of Radiation Biology, 87(2), 213–221.
  • Daugaard, M., Rohde, M., & Jäättelä, M. (2007). The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Letters, 581(19), 3702–3710.
  • Denlinger, D. L., Rinehart, J. P., & Yocum, G. (2001). Stress proteins: a role in insect diapause Insect timing: Circadian rhythmicity to seasonality. Amsterdam: Elsevier.
  • Elekonich, M. M. (2009). Extreme thermotolerance and behavioral induction of 70-kDa heat shock proteins and their encoding genes in honey bees. Cell Stress and Chaperones, 14(2), 219–226.
  • Emanuelsson, O., Nielsen, H., Brunak, S., & Von Heijne, G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology, 300(4), 1005–1016.
  • Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annual Review of Physiology, 61(1), 243–282.
  • Fink, A. L. (1999). Chaperone-mediated protein folding. Physiological Reviews, 79(2), 425–449.
  • Garbuz, D. G., Yushenova, I. A., Zatsepina, O. G., Przhiboro, A. A., Bettencourt, B. R., & Evgen'ev, M. B. (2011). Organization and evolution of hsp70 clusters strikingly differ in two species of Stratiomyidae (Diptera) inhabiting thermally contrasting environments. BMC Evolutionary Biology, 11(1), 74.
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Totowa, NJ: Humana Press.
  • Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11(6), 681–684.
  • Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293(5538), 2248–2251.
  • Guedes, R. C., Zhu, K. Y., Opit, G., & Throne, J. (2008). Differential heat shock tolerance and expression of heat-inducible proteins in two stored-product psocids. Journal of Economic Entomology, 101(6), 1974–1982.
  • Gui, Y., & Lu, M. (2010). Cloning of the heat shock protein 70 gene from Chilo suppressalis and the analysis of its expression characteristics under heat stress. Acta Entomologica Sinica, 53(8), 841–848.
  • Gupta, R. S. (1990). Microtubules, mitochondria, and molecular chaperones: A new hypothesis for in vivo assembly of microtubules. Biochemistry and Cell Biology, 68(12), 1352–1363.
  • Gusev, O., Cornette, R., Kikawada, T., & Okuda, T. (2011). Expression of heat shock protein-coding genes associated with anhydrobiosis in an African chironomid Polypedilum vanderplanki. Cell Stress and Chaperones, 16(1), 81–90.
  • Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. Nature, 381(6583), 571–579.
  • Helmbrecht, K., Zeise, E., & Rensing, L. (2000). Chaperones in cell cycle regulation and mitogenic signal transduction: A review. Cell Proliferation, 33(6), 341–365.
  • Horwich, A. L., Willison, K. R., Cowan, N., Viitanen, P., Micklethwaite, P., Gething, M.-J., … Welch, W. (1993). Protein folding in the cell: Functions of two families of molecular chaperone, hsp 60 and TF55-TCP1. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 339(1289), 313–326.
  • Huang, L.-H., Chen, B., & Kang, L. (2007). Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis. Journal of Insect Physiology, 53(12), 1199–1205.
  • Ikawa, S., & Weinberg, R. A. (1992). An interaction between p21ras and heat shock protein hsp60, a chaperonin. Proceedings of the National Academy of Sciences, 89(6), 2012–2016.
  • Jones, M., Gupta, R. S., & Englesberg, E. (1994). Enhancement in amount of P1 (hsp60) in mutants of Chinese hamster ovary (CHO-K1) cells exhibiting increases in the A system of amino acid transport. Proceedings of the National Academy of Sciences United States of America, 91(3), 858–862.
  • Kampinga, H. H., & Craig, E. A. (2010). The Hsp70 chaperone machinery: J-proteins as drivers of functional specificity. Nature reviews. Molecular Cell Biology, 11(8), 579–592.
  • Kelley, L. A., & Sternberg, M. J. (2009). Protein structure prediction on the Web: A case study using the Phyre server. Nature Protocols, 4(3), 363–371.
  • Kominek, J., Marszalek, J., Neuvéglise, C., Craig, E. A., & Williams, B. L. (2013). The complex evolutionary dynamics of Hsp70s: A genomic and functional perspective. Genome Biology and Evolution, 5(12), 2460–2477.
  • Koštál, V., & Tollarová-Borovanská, M. (2009). The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, Pyrrhocoris apterus. PLoS One, 4(2), e4546.
  • Kozlova, T., Perezgasga, L., Reynaud, E., & Zurita, M. (1997). The Drosophila melanogaster homologue of the hsp60 gene is encoded by the essential locus l (1) 10Ac and is differentially expressed during fly development. Development Genes and Evolution, 207(4), 253–263.
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132.
  • Lakhotia, S., & Singh, B. (1996). Synthesis of a ubiquitously present new HSP60 family protein is enhanced by heat shock only in the Malpighian tubules of Drosophila. Experientia, 52(8), 751–756.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291.
  • Li, Z., & Srivastava, P. (2004). Heat-shock proteins. Current protocols in immunology/edited by John E Coligan [et al.]: Appendix 1: Appendix 1T. doi:10.1002/0471142735.ima01ts58. PMID 18432918.
  • Liu, Q., & Hendrickson, W. A. (2007). Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell, 131(1), 106–120.
  • Lohe, A. R., Lidholm, D.-A., & Hartl, D. L. (1995). Genotypic effects, maternal effects and grand-maternal effects of immobilized derivatives of the transposable element mariner. Genetics, 140(1), 183–192.
  • Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., Lee, R. E., & Denlinger, D. L. (2008). High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochemistry and Molecular Biology, 38(8), 796–804.
  • Lü, Z.-C., & Wan, F.-H. (2011). Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius). Journal of Experimental Biology, 214(5), 764–769.
  • Lyupina, Y. V., Dmitrieva, S. B., Timokhova, A. V., Beljelarskaya, S. N., Zatsepina, O. G., Evgen'ev, M. B., & Mikhailov, V. S. (2010). An important role of the heat shock response in infected cells for replication of baculoviruses. Virology, 406(2), 336–341.
  • MacRae, T. H. (2010). Gene expression, metabolic regulation and stress tolerance during diapause. Cellular and Molecular Life Sciences, 67(14), 2405–2424.
  • Maiti, R., Van Domselaar, G. H., Zhang, H., & Wishart, D. S. (2004). SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Research, 32(suppl 2), W590–W594.
  • Martín, C. S., Flores, A. I., & Cuezva, J. M. (1995). Cpn60 is exclusively localized into mitochondria of rat liver and embryonic Drosophila cells. Journal of Cellular Biochemistry, 59(2), 235–245.
  • Martinus, R., Ryan, M., Naylor, D., Herd, S., Hoogenraad, N., & Høj, P. (1995). Role of chaperones in the biogenesis and maintenance of the mitochondrion. The FASEB Journal, 9(5), 371–378.
  • Michaud, M. R., Teets, N. M., Peyton, J. T., Blobner, B. M., & Denlinger, D. L. (2011). Heat shock response to hypoxia and its attenuation during recovery in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 57(1), 203–210.
  • Moghaddam, S. H. H., Du, X., Li, J., Cao, J., Zhong, B., & Chen, Y. (2008). Proteome analysis on differentially expressed proteins of the fat body of two silkworm breeds, Bombyx mori, exposed to heat shock exposure. Biotechnology and Bioprocess Engineering, 13(5), 624–631.
  • Möller, S., Croning, M. D., & Apweiler, R. (2001). Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 17(7), 646–653.
  • Morris, A. L., MacArthur, M. W., Hutchinson, E. G., & Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins: Structure, Function, and Bioinformatics, 12(4), 345–364.
  • Nguyen, T. T. A., Michaud, D., & Cloutier, C. (2009). A proteomic analysis of the aphid Macrosiphum euphorbiae under heat and radiation stress. Insect Biochemistry and Molecular Biology, 39(1), 20–30.
  • Ouzounis, C. A., Coulson, R. M., Enright, A. J., Kunin, V., & Pereira-Leal, J. B. (2003). Classification schemes for protein structure and function. Nature Reviews Genetics, 4(7), 508–519.
  • Parsell, D., & Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annual Review of Genetics, 27(1), 437–496.
  • Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786.
  • Planelló, R., Herrero, O., Martínez-Guitarte, J. L., & Morcillo, G. (2011). Comparative effects of butyl benzyl phthalate (BBP) and di (2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes. Aquatic Toxicology, 105(1), 62–70.
  • Ponnuvel, K., Murthy, G., Awasthi, A., Rao, G., & Vijayaprakash, N. (2010). Differential gene expression during early embryonic development in diapause and non-diapause eggs of multivoltine silkworm Bombyx mori. Indian Journal of Experimental Biology, 48(11), 1143–1151.
  • Pratt, W. B. (1997). The role of Thehsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via map kinase. Annual Review of Pharmacology and Toxicology, 37(1), 297–326.
  • Qiu, Z., & MacRae, T. H. (2008). ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochemical Journal, 411(3), 605–611.
  • Raboy, B., Sharon, G., Parag, H., Shochat, Y., & Kulka, R. (1991). Effect of stress on protein degradation: role of the ubiquitin system. Acta Biologica Hungarica, 42(1-3), 3–20.
  • Ramasarma, T., Joshi, N., Sekar, K., Uthayakumar, M., & Sherlin, D. (Eds.). (2012). Transmembrane domains. Chichester: Wiley.
  • Renault, D., Bouchereau, A., Delettre, Y. R., Hervant, F., & Vernon, P. (2006). Changes in free amino acids in Alphitobius diaperinus (Coleoptera: Tenebrionidae) during thermal and food stress. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143(3), 279–285.
  • Retzlaff, C., Yamamoto, Y., Hoffman, P. S., Friedman, H., & Klein, T. W. (1994). Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infection and Immunity, 62(12), 5689–5693.
  • Rinehart, J. P., & Denlinger, D. L. (2000). Heat-shock protein 90 is down-regulated during pupal diapause in the flesh fly, Sarcophaga crassipalpis, but remains responsive to thermal stress. Insect Molecular Biology, 9(6), 641–645.
  • Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Cellular and Molecular Life Sciences, 18(12), 571–573.
  • Rungrassamee, W., Leelatanawit, R., Jiravanichpaisal, P., Klinbunga, S., & Karoonuthaisiri, N. (2010). Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon. Developmental & Comparative Immunology, 34(10), 1082–1089.
  • Rybczynski, R., & Gilbert, L. I. (1995). Prothoracicotropic hormone-regulated expression of a hsp 70 cognate protein in the insect prothoracic gland. Molecular and Cellular Endocrinology, 115(1), 73–85.
  • Sanders, B., Pascoe, V., Nakagawa, P., & Martin, L. (1992). Persistence of the heat-shock response over time in a common Mytilus mussel. Molecular Marine Biology and Biotechnology, 1(2), 147–154.
  • Sarkar, S., Arya, R., & Lakhotia, S. C. (2006). Chaperonins: In life and death. In A. S. Sreedhar & U. K. Srinivas (Eds.), Stress Responses: A Molecular Biology Approach (pp.43–60). Kerala, India: Research Signpost
  • Sarkar, S., & Lakhotia, S. C. (2005). The Hsp60C gene in the 25F cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. Journal of Genetics, 84(3), 265–281.
  • Schwartz, A. S., Yu, J., Gardenour, K. R., Finley Jr, R. L., & Ideker, T. (2009). Cost-effective strategies for completing the interactome. Nature Methods, 6(1), 55–61.
  • Seddigh, S. (2017). Comprehensive comparison of two protein family of P-ATPases (13A1 and 13A3) in insects. Computational Biology and Chemistry, 68, 266–281.
  • Seddigh, S., & Darabi, M. (2014). Comprehensive analysis of beta-galactosidase protein in plants based on Arabidopsis thaliana. Turkish Journal of Biology, 38(1), 140–150.
  • Seddigh, S., & Darabi, M. (2015). Structural and phylogenetic analysis of α-glucosidase protein in insects. Biologia, 70(6), 812–825.
  • Seddigh, S., & Darabi, M. (2016). Proteomics comparison of aspartic protease enzyme in insects. Turkish Journal of Biology, 40(1), 69–83.
  • Seddigh, S., & Darabi, M. (2017). Functional, structural, and phylogenetic analysis of mitochondrial cytochrome b (cytb) in insects. Mitochondrial DNA Part A, 29(2), 1–17.
  • Servant, F., Bru, C., Carrère, S., Courcelle, E., Gouzy, J., Peyruc, D., & Kahn, D. (2002). ProDom: automated clustering of homologous domains. Briefings in Bioinformatics, 3(3), 246–251.
  • Sharma, S., Reddy, P., Rohilla, M. S., & Tiwari, P. (2006). Expression of HSP60 homologue in sheep blowfly Lucilia cuprina during development and heat stress. Journal of Thermal Biology, 31(7), 546–555.
  • Shim, J.-K., Ha, D.-M., Nho, S.-K., Song, K.-S., & Lee, K.-Y. (2008). Upregulation of heat shock protein genes by envenomation of ectoparasitoid Bracon hebetor in larval host of Indian meal moth Plodia interpunctella. Journal of Invertebrate Pathology, 97(3), 306–309.
  • Shu, Y., Du, Y., & Wang, J. (2011). Molecular characterization and expression patterns of Spodoptera litura heat shock protein 70/90, and their response to zinc stress. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 158(1), 102–110.
  • Singh, A. K., & Lakhotia, S. C. (2000). Tissue-specific variations in the induction of Hsp70 and Hsp64 by heat shock in insects. Cell Stress Chaperones, 5(2), 90–97.
  • Söding, J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics, 21(7), 951–960.
  • Sosalegowda, A. H., Kundapur, R. R., & Boregowda, M. H. (2010). Molecular characterization of heat shock proteins 90 (HSP83) and 70 in tropical strains of Bombyx mori. Proteomics, 10(15), 2734–2745.
  • Stephanou, A., & Latchman, D. S. (2011). Transcriptional modulation of heat-shock protein gene expression. Biochemistry Research International, 2011, 238601.
  • Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., … Tsafou, K. P. (2015). STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43, D447–D452.
  • Taipale, M., Jarosz, D. F., & Lindquist, S. (2010). HSP90 at the hub of protein homeostasis: Emerging mechanistic insights. Nature Reviews, 11(7), 515–528.
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.
  • Wang, H., Dong, S.-Z., Li, K., Hu, C., & Ye, G.-Y. (2008). A heat shock cognate 70 gene in the endoparasitoid, Pteromalus puparum, and its expression in relation to thermal stress. BMB Rep, 41(5), 388–393.
  • Wang, H., Li, K., Zhu, J. Y., Fang, Q., & Ye, G. Y. (2012). Cloning and expression pattern of heat shock protein genes from the endoparasitoid wasp, Pteromalus puparum in response to environmental stresses. Archives of Insect Biochemistry and Physiology, 79(4-5), 247–263.
  • Wang, L., Lin, H., Wang, Y., Li, Z., & Zhou, Z. (2012). Chromosomal localization and expressional profile of heat shock protein 70 family genes in silkworm, Bombyx mori. Science Sericulture, 38, 0617–0623.
  • Wells, A., Rai, S., Salvato, M., Band, H., & Malkovsky, M. (1997). Restoration of MHC class I surface expression and endogenous antigen presentation by a molecular chaperone. Scandinavian Journal of Immunology, 45(6), 605–612.
  • Woodlock, T. J., Chen, X., Young, D. A., Bethlendy, G., Lichtman, M. A., & Segel, G. B. (1997). Association of HSP60-like proteins with the L-system amino acid transporter. Archives of Biochemistry and Biophysics, 338(1), 50–56.
  • Xu, J., Shu, J., & Zhang, Q. (2010). Expression of the Tribolium castaneum (Coleoptera: Tenebrionidae) hsp83 gene and its relation to oogenesis during ovarian maturation. Journal of Genetics and Genomics, 37(8), 513–522.
  • Xu, J., & Zhang, Y. (2010). How significant is a protein structure similarity with TM-score =0.5? Bioinformatics, 26(7), 889–895.
  • Yocum, G. (2001). Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. Journal of Insect Physiology, 47(10), 1139–1145.
  • Yocum, G. D., Joplin, K. H., & Denlinger, D. L. (1991). Expression of heat shock proteins in response to high and low temperature extremes in diapausing pharate larvae of the gypsy moth, Lymantria dispar. Archives of Insect Biochemistry and Physiology, 18(4), 239–249.
  • Yuan, X., Zhou, W.-W., Zhou, Y., Liu, S., Lu, F., Yang, M.-F., … Zhu, Z.-R. (2014). Composition and expression of heat shock proteins in an invasive pest, the rice water weevil (Coleoptera: Curculionidae). Florida Entomologist, 97(2), 611–619.
  • Zhang, Y., & Skolnick, J. (2004). Scoring function for automated assessment of protein structure template quality. Proteins: Structure, Function, and Bioinformatics, 57(4), 702–710.
  • Zhao, L., Becnel, J., Clark, G., Linthicum, K., Chen, J., & Jin, X. (2010). Identification and expression profile of multiple genes in response to magnesium exposure in Culex quinquefasciatus larvae. Journal of Medical Entomology, 47(6), 1053.
  • Zhao, L., Pridgeon, J. W., Becnel, J. J., Clark, G. G., & Linthicum, K. J. (2009). Identification of genes differentially expressed during heat shock treatment in Aedes aegypti. Journal of Medical Entomology, 46(3), 490–495.
  • Zheng, D., Cui, X., Li, H., Cai, C., Gao, Y., & Shang, H. (2010). Cloning of heat shock protein gene, hsp70, in Liriomyza trifolii and its expression under temperature stress. Acta Phytophylacica Sinica, 37(2), 159–164.
  • Zhu, J. Y., Wu, G. X., Ye, G. Y., & Hu, C. (2013). Heat shock protein genes (hsp20, hsp75 and hsp90) from Pieris rapae: molecular cloning and transcription in response to parasitization by Pteromalus puparum. Insect Science, 20(2), 183–193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.