105
Views
9
CrossRef citations to date
0
Altmetric
Opinion Piece

Key microstructural mechanisms of the 2-aminopurine mutagenicity: Results of extensive quantum-chemical research

ORCID Icon & ORCID Icon
Pages 2716-2732 | Received 17 May 2018, Accepted 18 Jun 2018, Published online: 08 Jan 2019

References

  • Abou-Zied, O. K. (2013). Effect of NH2 rotation on the fluorescence of 2-aminopurine in solution. Journal of Photochemistry and Photobiology A: Chemistry, 261, 1–6. doi: 10.1016/j.jphotochem.2013.03.007.
  • Alemán, E. A., de Silva, C., Patrick, E. M., Musier-Forsyth, K., & Rueda, D. (2014). Single-molecule fluorescence using nucleotide analogs: A proof-of-principle. The Journal of Physical Chemistry Letters, 5(5), 777–781. doi: 10.1021/jz4025832.
  • Bader, R. F. W. (1990). Atoms in molecules: A quantum theory. Oxford: Oxford University Press.
  • Bayley, S. T. (1951). The dielectric properties of various solid crystalline proteins, amino acids and peptides. Transactions of the Faraday Society, 47, 509–517. doi: 10.1039/TF9514700509
  • Bebenek, K., Pedersen, L. C., & Kunkel, T. A. (2011). Replication infidelity via a mismatch with Watson–Crick geometry. Proceedings of the National Academy of Sciences, 108(5), 1862–1867. doi: 10.1073/pnas.1012825108.
  • Bessman, M. J., Muzyczka, N., Goodman, M. F., & Schnaar, R. L. (1974). Studies on the biochemical basis of spontaneous mutation. II. The incorporation of a base and its analogue into DNA by wild-type, mutator and antimutator DNA polymerases. Journal of Molecular Biology, 88(2), 409–421. doi: 10.1016/0022-2836(74)90491-4
  • Bonnist, E. Y. M., Liebert, K., Dryden, D. T. F., Jeltsch, A., & Jones, A. C. (2012). Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA- (adenine-N6)-methyltransferase on enzyme binding. Biophysical Chemistry, 160(1), 28–34. doi: 10.1016/j.bpc.2011.09.001.
  • Broo, A., & Holmén, A. (1996). Ab initio MP2 and DFT calculations of geometry and solution tautomerism of purine and some purine derivatives. Chemical Physics, 211(1-3), 147–161.
  • Brovarets', O. O. (2010). Physico-chemical nature of the spontaneous and induced by the mutagens transitions and transversions (PhD Thesis). Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
  • Brovarets', O. O. (2015). Microstructural mechanisms of the origin of the spontaneous point mutations (DrSci Thesis). Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
  • Brovarets', O. O., & Hovorun, D. M. (2010a). Molecular mechanisms of the mutagenic action of 2-aminopurine on DNA. Ukrainica Bioorganica Acta, 9, 11–17.
  • Brovarets', O. O., & Hovorun, D. M. (2010b). How stable are the mutagenic tautomers of DNA bases? Biopolymers and Cell, 26(1), 72–76.
  • Brovarets', O. O., & Hovorun, D. M. (2010c). Stability of mutagenic tautomers of uracil and its halogen derivatives: The results of quantum-mechanical investigation. Biopolymers and Cell, 26(4), 295–298.
  • Brovarets, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2010). Is there adequate ionization mechanism of the spontaneous transitions? Quantum-chemical investigation. Biopolymers and Cell, 26(5), 398–405.
  • Brovarets', O. O., & Hovorun, D. M. (2011a). Intramolecular tautomerization and the conformational variability of some classical mutagens – cytosine derivatives: Quantum chemical study. Biopolymers and Cell, 27(3), 221–230.
  • Brovarets’, O. O., & Hovorun, D. M. (2011b). IR vibrational spectra of H-bonded complexes of adenine, 2-aminopurine and 2-aminopurine+ with cytosine and thymine: Quantum-chemical study. Optics and Spectroscopy, 111(5), 750–757.
  • Brovarets', O. O., & Hovorun, D. M. (2013a). Atomistic nature of the DPT tautomerisation of the biologically important C·C* DNA base mispair containing amino and imino tautomers of cytosine: A QM and QTAIM approach. Physical Chemistry Chemical Physics, 15(46), 20091–20104.
  • Brovarets’, O. O., & Hovorun, D. M. (2013b). Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: An exhaustive quantum-chemical analysis. Journal of Biomolecular Structure and Dynamics, 31(8), 913–936.
  • Brovarets', O. O., & Hovorun, D. M. (2013c). Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. Journal of Computational Chemistry, 34(30), 2577–2590.
  • Brovarets', O. O., & Hovorun, D. M. (2014a). DPT tautomerisation of the G·Asyn and A*·G*syn DNA mismatches: A QM/QTAIM combined atomistic investigation. Physical Chemistry Chemical Physics, 16(19), 9074–9085.
  • Brovarets', O. O., & Hovorun, D. M. (2014b). How does the long G·G* Watson–Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation. Physical Chemistry Chemical Physics, 16(30), 15886–15899.
  • Brovarets’, O. O., & Hovorun, D. M. (2014c). Can tautomerisation of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. Journal of Biomolecular Structure and Dynamics, 32(1), 127–154.
  • Brovarets’, O. O., & Hovorun, D. M. (2014d). Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis. Journal of Biomolecular Structure & Dynamics, 32(9), 1474–1499.
  • Brovarets’, O. O., & Hovorun, D. M. (2014e). Does the G·G*syn DNA mismatch containing canonical and rare tautomers of the guanine tautomerise through the DPT? A QM/QTAIM microstructural study. Molecular Physics, 112(23), 3033–3046.
  • Brovarets’, O. O., & Hovorun, D. M. (2015a). Novel physicochemical mechanism of the mutagenic tautomerisation of the Watson-Crick-like A·G and C·T DNA base mispairs: A quantum-chemical picture. RSC Advances, 5(81), 66318–66333.
  • Brovarets’, O. O., & Hovorun, D. M. (2015b). New structural hypostases of the A·T and G·C Watson-Crick DNA base pairs caused by their mutagenic tautomerisation in a wobble manner: a QM/QTAIM prediction. RSC Advances, 5(121), 99594–99605.
  • Brovarets', O. O., & Hovorun, D. M. (2015c). Tautomeric transition between wobble A·C DNA base mispair and Watson–Crick-like A·C* mismatch: Microstructural mechanism and biological significance. Physical Chemistry Chemical Physics, 17(23), 15103–15110.
  • Brovarets', O. O., & Hovorun, D. M. (2015d). A novel conception for spontaneous transversions caused by homo-pyrimidine DNA mismatches: A QM/QTAIM highlight. Physical Chemistry Chemical Physics, 17(33), 21381–21388.
  • Brovarets’, O. O., & Hovorun, D. M. (2015e). The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding. Journal of Biomolecular Structure & Dynamics, 33(1), 28–55.
  • Brovarets’, O. O., & Hovorun, D. M. (2015f). The nature of the transition mismatches with Watson-Crick architecture: The G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. Journal of Biomolecular Structure & Dynamics, 33(5), 925–945.
  • Brovarets’, O. O., & Hovorun, D. M. (2015g). How many tautomerisation pathways connect Watson-Crick-like G*·T DNA base mispair and wobble mismatches? Journal of Biomolecular Structure & Dynamics, 33(11), 2297–2315.
  • Brovarets’, O. O., & Hovorun, D. M. (2015h). Wobble↔Watson-Crick tautomeric transitions in the homo-purine DNA mismatches: A key to the intimate mechanisms of the spontaneous transversions. Journal of Biomolecular Structure & Dynamics, 33(12), 2710–2715.
  • Brovarets’, O. O., & Hovorun, D. M. (2015i). Proton tunneling in the A·T Watson-Crick DNA base pair: myth or reality? Journal of Biomolecular Structure & Dynamics, 33(12), 2716–2720.
  • Brovarets’, O. O., & Hovorun, D. M. (2015j). How do long improper purine-purine pairs of DNA bases adapt the enzymatically competent conformation? Structural mechanism and its quantum-mechanical grounds. Ukrainian Journal of Physics, 60(8), 748–756.
  • Brovarets’, O. O., & Hovorun, D. M. (2016). By how many tautomerisation routes the Watson-Crick-like А·С* DNA base mispair is linked with the wobble mismatches? A QM/QTAIM vision from a biological point of view. Structural Chemistry, 27(1), 119–131.
  • Brovarets’, O. O., & Hovorun, D. M. (2018a). Atomistic mechanisms of the double proton transfer in the H-bonded nucleobase pairs: QM/QTAIM computational lessons. Journal of Biomolecular Structure & Dynamics, 1.
  • Brovarets', O. O., & Hovorun, D. M. (2018b). Renaissance of the tautomeric hypothesis of the spontaneous point mutations in DNA: New ideas and computational approaches. In H. Seligmann (Ed.), Mitochondrial DNA – new insights. Rijeka: In Tech Open Access Publishing.
  • Brovarets’, O. O., Kolomiets’, I. M., & Hovorun, D. M. (2012). Elementary molecular mechanisms of the spontaneous point mutations in DNA: A novel quantum-chemical insight into the classical understanding. In T. Tada (Ed.), Quantum chemistry – Molecules for innovations. Rijeka: InTech Open Access. https://www.intechopen.com/books/quantum-chemistry-molecules-for-innovations/elementary-molecular-mechanisms-of-the-spontaneous-point-mutations-in-dna-a-novel-quantum-chemical-i.
  • Brovarets', O. O., & Pérez-Sánchez, H. (2016). Whether the amino-imino tautomerism of 2-aminopurine is involved into its mutagenicity? Results of a thorough QM investigation. RSC Advances, 6(110), 108255–108264.
  • Brovarets’, O. O., & Pérez-Sánchez, H. E. (2017). Whether 2-aminopurine induces incorporation errors at the DNA replication? A quantum-mechanical answer on the actual biological issue. Journal of Biomolecular Structure & Dynamics, 35(15), 3398–3411.
  • Brovarets', O. O., Pérez-Sánchez, H., & Hovorun, D. M. (2016). Structural grounds for the 2-aminopurine mutagenicity: A novel insight into the old problem of the replication errors. RSC Advances, 6(101), 99546–99557.
  • Brovarets', O. O., Voiteshenko, I. S., & Hovorun, D. M. (2018). Physico-chemical profiles of the wobble↔Watson-Crick G*·2AP(w)↔G·2AP(WC) and A·2AP(w)↔A*·2AP(WC) tautomerisations: A QM/QTAIM comprehensive survey. Physical Chemistry Chemical Physics, 20(1), 623–636.
  • Brovarets', O. O., Voiteshenko, I. S., Pérez-Sánchez, H., & Hovorun, D. M. (2017). A QM/QTAIM research under the magnifying glass of the DPT tautomerisation of the wobble mispairs involving 2-aminopurine. New Journal of Chemistry, 41(15), 7232–7243.
  • Brovarets’, O. O., Voiteshenko, I., Pérez-Sánchez, H. E., & Hovorun, D. M. (2018). A QM/QTAIM detailed look at the Watson-Crick↔wobble tautomeric transformations of the 2-aminopurine·pyrimidine mispairs. Journal of Biomolecular Structure & Dynamics, 36, 1665.
  • Brovarets’, O. O., Yurenko, Y. P., Dubey, I. Y., & Hovorun, D. M. (2012). Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study. Journal of Biomolecular Structure & Dynamics, 29(6), 1101–1109.
  • Brovarets’, O. O., Yurenko, Y. P., & Hovorun, D. M. (2014). Intermolecular CH•••O/N-bonds in the biologically important pairs of natural nucleobases: A thorough quantum-chemical study. Journal of Biomolecular Structure & Dynamics, 32(6), 993–1022.
  • Brovarets’, O. O., Yurenko, Y. P., & Hovorun, D. M. (2015). The significant role of the intermolecular CH⋯ O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: A comprehensive theoretical investigation. Journal of Biomolecular Structure & Dynamics, 33(8), 1624–1652.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013a). The physico-chemical "anatomy" of the tautomerisation through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. Journal of Molecular Modeling, 19(10), 4119–4137.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013b). DPT tautomerization of the long A·A* Watson-Crick base pair formed by the amino and imino tautomers of adenine: Combined QM and QTAIM investigation. Journal of Molecular Modeling, 19(10), 4223–4237.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013c). The physico-chemical mechanism of the tautomerisation via the DPT of the long Hyp*·Hyp Watson– Crick base pair containing rare tautomer: A QM and QTAIM detailed look. Chemical Physics Letters, 578, 126–132.
  • Brovarets', O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014). Does the tautomeric status of the adenine bases change upon the dissociation of the А*·Аsyn Topal–Fresco DNA mismatch? A combined QM and QTAIM atomistic insight. Physical Chemistry Chemical Physics, 16(8), 3715–3725.
  • Brovarets', O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014). Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. Journal of Computational Chemistry, 35(6), 451–466.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014). A QM/QTAIM microstructural analysis of the tautomerisation via the DPT of the hypoxanthine·adenine nucleobase pair. Molecular Physics, 112(15), 2005–2016.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014). Structural, energetic and tautomeric properties of the T·T*/T*·T DNA mismatch involving mutagenic tautomer of thymine: A QM and QTAIM insight. Chemical Physics Letters, 592, 247–255.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2015). DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments. Journal of Biomolecular Structure and Dynamics, 33(3), 674–689.
  • Danilov, V. I., Krugliak, I. A., Kuprievich, V. A., & Shramko, O. V. (1967). Mechanism of mutagenic action of 2-aminopurine. Biofizika, 12, 726–729.
  • Dallmann, A., Dehmel, L., Peters, T., Mügge, C., Griesinger, C., Tuma, J., & Ernsting, N. P. (2010). 2-aminopurine incorporation perturbs the dynamics and structure of DNA. Angewandte Chemie International Edition, 49(34), 5989–5992.
  • Dewar, M. J. S., & Storch, D. M. (1985). Alternative view of enzyme reactions. Proceedings of the National Academy of Sciences of USA, 82(8), 2225–2229.
  • Diederichsen, U. (1998). Selectivity of DNA replication: the importance of base-pair geometry over hydrogen bonding. Angewandte Chemie International Edition, 37(12), 1655–1657.
  • El-Sayed, A. A., Tamara Molina, A., Alvarez-Ros, M. C., & Alcolea Palafox, M. (2015). Conformational analysis of the anti-HIV Nikavir prodrug: comparisons with AZT and thymidine, and establishment of structure-activity relationships/tendencies in other 6′-derivatives. Journal of Biomolecular Structure & Dynamics, 33(4), 723–748.
  • Elvin, A., Alemán, E. A., & Rueda, D. (2011). 2-Aminopurine single-molecule fluorescence. Biophysical Journal (Suppl. 1), 100(3), 474a.
  • Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3–4), 170–173.
  • Fagan, P. A., Fàbrega, C., Eritja, R., Goodman, M. F., & Wemmer, D. E. (1996). NMR study of the conformation of the 2-aminopurine:cytosine mismatch in DNA. Biochemistry, 35(13), 4026–4033.
  • Fazakerley, G. V., Sowers, L. C., Eritja, R., Kaplan, B. E., & Goodman, M. F. (1987). NMR studies on an oligodeoxynucleotide containing 2-aminopurine opposite adenine. Biochemistry, 26(18), 5641–5646.
  • Fersht, A. R., Knill-Jones, J. W., & Tsui, W. C. (1982). Kinetic basis of spontaneous mutation. Misinsertion frequencies, proofreading specificities and cost of proofreading by DNA polymerases of Escherichia coli. Journal of Molecular Biology, 156(1), 37–51.
  • Freese, E. (1959a). On the molecular explanation of spontaneous and induced mutations. Brookhaven Symposium in Biology, 12, 63–75.
  • Freese, E. (1959b). The specific mutagenic effect of base analogue on phage T4. Journal of Molecular Biology, 1(2), 87–105.
  • Freese, E. (1959c). The difference between spontaneous and base-analogue induced mutations of phage. Proceeding of the National Academy of Sciences of the United States of America, 45(4), 622–633.
  • Freese, E. B. (1968). The mutagenic effect of hydroxyaminopurine derivatives on phage T4. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 5(2), 299–301.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Pople, J. A. (2010). GAUSSIAN 09 (Revision B.01). Wallingford CT: Gaussian Inc.
  • García-Moreno, B. E., Dwyer, J. J., Gittis, A. G., Lattman, E. E., Spencer, D. S., & Stites, W. E. (1997). Experimental measurement of the effective dielectric in the hydrophobic core of a protein. Biophysical. Chemistry, 64(1–3), 211–224.
  • Glendening, E. D., Reed, A. E., Carpenter, J. E., & Weinhold, F. (1994). NBO, 3.1. Madison, WI: Theoretical Chemistry Institute, University of Wisconsin.
  • Glickman, B. W. (1985). 2-aminopurine mutagenesis in Escherichia coli. In F. J. de Serres (Ed.), Genetic consequences of nucleotide pool imbalance. Volume31 of the series basic life sciences (pp. 353–379). Berlin: Springer.
  • Goodman, M. F. (1997). Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proceeding of the National Academy of Sciences of the United States of America, 94(20), 10493–10495.
  • Goodman, M. F., Hopkins, R., & Gore, W. C. (1977). 2-Aminopurine-induced mutagenesis in T4 bacteriophage: A model relating mutation frequency to 2-aminopurine incorporation in DNA. Proceeding of the National Academy of Sciences of the United States of America, 74(11), 4806–4810.
  • Gorb, L., Podolyan, Y., Dziekonski, P., Sokalski, W. A., & Leszczynski, J. (2004). Double-proton transfer in adenine–thymine and guanine–cytosine base pairs. A post Hartree–Fock ab initio study. Journal of the American Chemical Society, 126(32), 10119–10129.
  • Govorun, D. M., Danchuk, V. D., Mishchuk, Y. R., Kondratyuk, I. V., Radomsky, N. F., & Zheltovsky, N. V. (1992). AM1 calculation of the nucleic acid bases structure and vibrational spectra. Journal of Molecular Structure, 267, 99–103.
  • Guest, C. R., Hochstrasser, R. A., Sowers, L. C., & Millar, D. P. (1991). Dynamics of mismatched base pairs in DNA. Biochemistry, 30(13), 3271–3279.
  • Holz, B., Weinhold, E., Klimasauskas, S., & Serva, S. (1998). 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Research, 26(4), 1076–1083.
  • Hovorun, D. M. (1997). A structural isomerism of nucleotide bases: AM1 calculation. Biopolymers and Cell, 13(2), 127–134.
  • Hovorun, D. M., Gorb, L., & Leszczynski, J. (1999). From the nonplanarity of the amino group to the structural nonrigidity of the molecule: a post-Hartree-Fock ab initio study of 2-aminoimidazole. International Journal of Quantum Chemistry, 75(3), 245–253.
  • Hovorun, D. M., Mishchuk, Y. R., & Kondratyuk, I. V. (1996). On a quantum-chemical nature of a stereochemical nonrigidity of canonical nucleotide bases. Biopolymers and Cell, 12(5), 5–12.
  • Hratchian, H. P., & Schlegel, H. B. (2005). Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In Dykstra, C.E., Frenking, G., Kim, K.S., & Scuseria, G. (Eds.), Theory and applications of computational chemistry: The first 40 years (pp. 195–249). Amsterdam: Elsevier.
  • Huang, M. M., Arnheim, N., & Goodman, M. F. (1992). Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Research, 20(17), 4567–4573.
  • Iogansen, A. V. (1999). Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55(7–8), 1585–1612.
  • Jean, J. M., & Hall, K. B. (2001). 2-Aminopurine fluorescence quenching and lifetimes: Role of base stacking. Proceedings of the National Academy of Sciences, 98(1), 37–41.
  • Jean, J. M., & Hall, K. B. (2002). 2-Aminopurine electronic structure and fluorescence properties in DNA. Biochemistry, 41(44), 13152–13161.
  • Jones, A. C., & Neely, R. K. (2015). 2-aminopurine as a fluorescent probe of DNA conformation and the DNA–enzyme interface. Quarterly Reviews of Biophysics, 48(02), 244–279.
  • Keith, T. A. (2010). AIMAll (Version 10.07.01). Retrieved from aim.tkgristmill.com.
  • Kimsey, I. J., Petzold, K., Sathyamoorthy, B., Stein, Z. W., & Al-Hashimi, H. M. (2015). Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes. Nature, 519(7543), 315–320.
  • Kirmizialtin, S., Nguyen, V., Johnson, K. A., & Elber, R. (2012). How conformational dynamics of DNA polymerase select correct substrates: Experiments and simulations. Structure, 20(4), 618–627.
  • Kochina, O. S., Yurenko, Y. P., & Hovorun, D. M. (2007). Does non-empirical quantum chemistry allow understanding nature of purine-purine mismatches formation by high fidelity DNA polymerases? Biopolymers and Cell, 23(3), 167–171.
  • Kondratyuk, I. V., Samijlenko, S. P., Kolomiets’, I. M., & Hovorun, D. M. (2000). Prototropic molecular-zwitterionic tautomerism of xanthine and hypoxanthine. Journal of Molecular Structure, 523(1–3), 109–118.
  • Kordium, V. A. (2007). Mutations: What are they? Biopolymers and Cell, 23(3), 215–242.
  • Kramer, B., Kramer, W., & Fritz, H.-J. (1984). Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell, 38(3), 879–887.
  • Law, S. M., Eritja, R., Goodman, M. F., & Breslauer, K. J. (1996). Spectroscopic and calorimetric characterization of DNA duplexes containing 2-aminopurine. Biochemistry, 35(38), 12329–12337.
  • Lenz, T., Bonnist, E. Y. M., PljevaljčIć, G., Neely, R. K., Dryden, D. T. F., Scheidig, A. J., … Weinhold, E. (2007). 2- Aminopurine flipped into the active site of the adenine-specific DNA methyltransferase M.TaqI: crystal structures and time-resolved fluorescence. Journal of the American Chemical Society, 129(19), 6240–6248.
  • Löwdin, P.-O. (1963). Proton tunneling in DNA and its biological implications. Reviews of Modern Physics, 35(3), 724–732.
  • Löwdin, P.-O. (1966). Quantum genetics and the aperiodic solid: Some aspects on the biological problems of heredity, mutations, aging, and tumors in view of the quantum theory of the DNA molecule. In P.-O. Löwdin (Ed.), Advances in Quantum Chemistry (vol. 2, pp. 213–360). New York: Academic Press.
  • Mata, I., Alkorta, I., Espinosa, E., & Molins, E. (2011). Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chemical Physics Letters, 507(1–3), 185–189.
  • Matta, C. F. (2006). Chapter 9. Hydrogen–hydrogen bonding: the non-electrostatic limit of closed-shell interaction between two hydrogen atoms. A critical review. In S. Grabowski (Ed.), Hydrogen bonding—New insights (pp. 337–375). Berlin: Springer.
  • Matta, C. F. (2014). Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential. Journal of Computational Chemistry, 35(16), 1165–1198.
  • Matta, C. F., Castillo, N., & Boyd, R. J. (2006). Atomic contributions to bond dissociation energies in aliphatic hydrocarbons. Journal of Chemical Physics, 125(20), 204103.
  • Matta, C. F., Castillo, N., & Boyd, R. J. (2006). Extended weak bonding interactions in DNA: π-stacking (base-base), base-backbone, and backbone-backbone interactions. The Journal of Physical Chemistry B, 110(1), 563–578.
  • Matta, C. F., & Hernández-Trujillo, J. (2005). Bonding in polycyclic aromatic hydrocarbons in terms of the electron density and of electron delocalization. Journal of Physical Chemistry A, 109, 10798–10798.
  • Maximoff, S. N., Kamerlin, S. C. L., & Florian, J. (2017). DNA Polymerase λ active site favors a mutagenic mispair between the enol form of deoxyguanosine triphosphate substrate and the keto form of thymidine template: A free energy perturbation study. The Journal of Physical Chemistry B, 121(33), 7813–7822. doi: 10.1021/acs.jpcb.7b04874.
  • Mejía-Mazariegos, L., & Hernández-Trujillo, J. (2009). Electron density analysis of tautomeric mechanisms of adenine, thymine and guanine and the pairs of thymine with adenine or guanine. Chemical Physics Letters, 482(1–3), 24–29.
  • Mertz, E. L., & Krishtalik, L. I. (2000). Low dielectric response in enzyme active site. Proceedings of the National Academy of Sciences of USA, 97(5), 2081–2086.
  • Millar, D. P. (1996). Fluorescence studies of DNA and RNA structure and dynamics. Current Opinion in Structural Biology, 6(3), 322–326.
  • Morgan, A. R. (1993). Base mismatches and mutagenesis: how important is tautomerism? Trends in Biochemical Sciences, 18(5), 160–163.
  • Neely, R. K., Tamulaitis, G., Chen, K., Kubala, M., Siksnys, V., & Jones, A. C. (2009). Time-resolved fluorescence studies of nucleotide flipping by restriction enzymes. Nucleic Acids Research, 37(20), 6859–6870.
  • Nikolaienko, T. Y., Bulavin, L. A., & Hovorun, D. M. (2011). How flexible are DNA constituents? The quantum-mechanical study. Journal of Biomolecular Structure & Dynamics, 29(3), 563–575.
  • Nikolaienko, T. Y., Bulavin, L. A., & Hovorun, D. M. (2012). Bridging QTAIM with vibrational spectroscopy: The energy of intramolecular hydrogen bonds in DNA-related biomolecules. Physical Chemistry Chemical Physics, 14(20), 7441–7447.
  • Osborn, M., Person, S., Phillips, S., & Funk, F. (1967). A determination of mutagen specificity in bacteria using nonsense mutants of bacteriophage T4. Journal of Molecular Biology, 26(3), 437–447.
  • Palafox, M. A. (2014). Molecular structure differences between the antiviral nucleoside analogue 5-iodo-2`-deoxyuridine and the natural nucleoside 2`-deoxythymidine using MP2 and DFT methods: conformational analysis, crystal simulations, DNA pairs and possible behavior. Journal of Biomolecular Structure & Dynamics, 32, 831–851.
  • Petruska, J., Sowers, L. C., & Goodman, M. F. (1986). Comparison of nucleotide interactions in water, proteins, and vacuum: Model for DNA polymerase fidelity. Proceeding of the National Academy of Sciences of USA, 83(6), 1559–1562.
  • Pitsikas, P., Patapas, J. M., & Cupples, C. G. (2004). Mechanism of 2-aminopurine-stimulated mutagenesis in Escherichia coli. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 550(1–2), 25–32.
  • Platonov, M. O., Samijlenko, S. P., Sudakov, O. O., Kondratyuk, I. V., & Hovorun, D. M. (2005). To what extent can methyl derivatives be regarded as stabilized tautomers of xanthine? Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 62(1–3), 112–114.
  • Podolyan, Y., Gorb, L., & Leszczynski, J. (2003). Ab initio study of the prototropic tautomerism of cytosine and guanine and their contribution to spontaneous point mutations. International Journal of Molecular Sciences, 4(7), 410–421.
  • Poltev, V. I., & Bruskov, V. I. (1977). Molecular mechanisms of spontaneous transversions and transitions. Molecular Biology, 11, 661–670.
  • Pullman, B., & Pullman, A. (1962). Electronic delocalization and biochemical evolution. Nature, 196(4860), 1137–1142.
  • Rachofsky, E. L., Osman, R., & Ross, J. B. A. (2001). Probing structure and dynamics of DNA with 2-aminopurine: Effects of local environment on fluorescence. Biochemistry, 40(4), 946–956.
  • Ramaekers, R., Adamowicz, L., & Maes, G. (2002). Tautomery and H-bonding characteristics of 2-aminopurine: A combined experimental and theoretical study. The European Physical Journal D, 20(3), 375–388.
  • Reha-Krantz, L. J. (2009). The use of 2-aminopurine fluorescence to study DNA polymerase function. Methods in Molecular Biology (Methods and Protocols), 521, 381–396.
  • Reha-Krantz, L. J., Hariharan, C., Subuddhi, U., Xia, S., Zhao, C., Beckman, J., … Konigsberg, W. (2011). Structure of the 2-aminopurine-cytosine base pair formed in the polymerase active site of the RB69 Y567A-DNA polymerase. Biochemistry, 50(46), 10136–10149.
  • Rein, R., & Garduno, R. (1976). Energetics and mechanism of 2-aminopurine induced mutations chapter quantum science. In J.-L. Calais, O. Goscinski, J., Linderberg, & Y. Öhrn (Eds.), Quantum Science. Berlin: Springer, pp. 549–560.
  • Rist, M. J., & Marino, J. P. (2002). Fluorescent nucleotide base analogs as probes of nucleic acid structure, dynamics and interactions. Current Organic Chemistry, 6(9), 775–793.
  • Ronen, A. (1980). 2-Aminopurine. Mutation Research/Reviews in Genetic Toxicology, 75(1), 1–47.
  • Rösel, S., Quanz, H., Logemann, C., Becker, J., Mossou, E., Cañadillas-Delgado, L., … Schreiner, P. R. (2017). London dispersion enables the shortest intermolecular hydrocarbon H···H contact. Journal of the American Chemical Society, 139(22), 7428–7431.
  • Saenger, W. (1984). Principles of nucleic acid structure. New York: Springer.
  • Samijlenko, S. P., Krechkivska, O. M., Kosach, D. A., & Hovorun, D. M. (2004). Transitions to high tautomeric states can be induced in adenine by interactions with carboxylate and sodium ions: DFT calculation data. Journal of Molecular Structure, 708(1–3), 97–104.
  • Sherer, E. C., & Cramer, C. J. (2001). Quantum chemical characterization of the cytosine:2-aminopurine base pair. Journal of Computational Chemistry, 22(11), 1167–1179.
  • Shukla, M. K., & Leszczynski, J. (2013). Tautomerism in nucleic acid bases and base pairs: A brief overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(6), 637–649.
  • Sinha, N. K., & Haimes, M. D. (1981). Molecular mechanisms of substitution mutagenesis. An experimental test of the Watson-Crick and Topal-Fresco models of base mispairings. Journal of Biological Chemistry, 256, 10671–10683.
  • Sintim, H. O., & Kool, E. T. (2006). Remarkable sensitivity to DNA base shape in the DNA polymerase active site. Angewandte Chemie International Edition, 45(12), 1974–1979.
  • Sowers, L. C., Boulard, Y., & Fazakerley, G. V. (2000). Multiple structures for the 2-aminopurine-cytosine mispair. Biochemistry, 39(25), 7613–7620.
  • Sowers, L. C., Eritja, R., Chen, F. M., Khwaja, T., Kaplan, B. E., Goodman, M. F., & Fazakerley, G. V. (1989). Characterization of the high pH wobble structure of the 2-aminopurine·cytosine mismatch by N-15 NMR spectroscopy. Biochemical Biophysical Research Communications, 165(1), 89–92.
  • Sowers, L. C., Fazakerley, G. V., Eritja, R., Kaplan, B. E., & Goodman, M. F. (1986). Base pairing and mutagenesis: Observation of a protonated base pair between 2-aminopurine and cytosine in an oligonucleotide by proton NMR. Proceeding of the National Academy of Sciences of the United States of America, 83(15), 5434–5438.
  • Szymanski, E. S., Kimsey, I. J., & Al-Hashimi, H. M. (2017). Direct NMR evidence that transient tautomeric and anionic states in dG·dT form Watson–Crick-like base pairs. Journal of the American Chemical Society, 139(12), 4326–4329.
  • Tleugabulova, D., & Reha-Krantz, L. J. (2007). Probing DNA polymerase-DNA interactions: Examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching. Biochemistry, 46(22), 6559–6569.
  • Tolosa, S., Sánchez, J. P., Sansón, J. A., & Hidalgo, A. (2017). Steered molecular dynamic simulations of the tautomeric equilibria in solution of DNA bases. Journal of Molecular Liquids, 237, 81–88.
  • Topal, M. D., & Fresco, J. R. (1976). Complementary base pairing and the origin of substitution mutation. Nature, 263(5575), 285–289.
  • Turaeva, N., & Brown-Kennerly, V. (2015). Marcus model of spontaneous point mutation in DNA. Chemical Physics, 461, 106–110.
  • Umar, A., & Kunkel, T. A. (1996). DNA-replication fidelity, mismatch repair and genome instability in cancer cells. European Journal of Biochemistry, 238(2), 297–307.
  • Von Borstel, R. C. (1994). Origins of spontaneous base substitutions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 307, 131–140.
  • Wacker, A., Lodemann, E., Gauri, K., & Chandra, P. (1966). Synthesis and coding properties of 2-aminopurine polyribonucleotide. Journal of Molecular Biology, 18(2), 382.
  • Wang, C., Mo, Y., Wagner, J. P., Schreiner, P. R., Jemmis, E. D., Danovich, D., & Shaik, S. (2015). The self-association of graphane is driven by London dispersion and enhanced orbital interactions. Journal of Chemical Theory and Computation, 11(4), 1621–1630.
  • Wang, W., Hellinga, H. W., & Beese, L. S. (2011). Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proceeding of the National Academy of Sciences of the United States of America, 108(43), 17644–17648.
  • Ward, D. C., Reich, E., & Stryer, L. (1969). Fluorescence studies of nucleotides and polynucleotides: I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. Journal of Biological Chemistry, 244, 1228–1237. http://www.jbc.org/content/244/5/1228.abstract.
  • Watanabe, S. M., & Goodman, M. F. (1981). On the molecular basis of transition mutations: Frequencies of forming 2-aminopurine·cytosine and adenine·cytosine base mispairs in vitro. Proceeding of the National Academy of Sciences of the United States of America, 78(5), 2864–2868.
  • Watanabe, S. M., & Goodman, M. F. (1982). Kinetic measurement of 2-aminopurine cytosine and 2-aminopurine thymine base pairs as a test of DNA polymerase fidelity mechanisms. Proceeding of the National Academy of Sciences of the United States of America, 79(21), 6429–6433.
  • Watson, J. D., & Crick, F. H. C. (1953). The structure of DNA. Cold Spring Harbor Symposia on Quantum Biology, 18(0), 123–131.
  • Zoete, V., & Meuwly, M. (2004). Double proton transfer in the isolated and DNA-embedded guanine-cytosine base pair. Journal of Chemical Physics, 121(9), 4377–4388.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.