635
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Assessment of the chitosan-functionalized graphene oxide as a carrier for loading thioguanine, an antitumor drug and effect of urea on adsorption process: Combination of DFT computational and molecular dynamics simulation studies

&
Pages 2487-2497 | Received 09 Apr 2018, Accepted 27 Jun 2018, Published online: 01 Nov 2018

References

  • Bagaria, P., Saha, S., Murru, S., Kavala, V., Patel, B. K., & Roy, R. K. (2009). A comprehensive decomposition analysis of stabilization energy (CDASE) and its application in locating the rate-determining step of multi-step reactions. Physical Chemistry Chemical Physics, 11(37), 8306–8315. doi: 10.1039/B902335F
  • Bao, H., Pan, Y., Ping, Y., Sahoo, N. G., Wu, T., Li, L., & Gan, L. H. (2011). Chitosan‐functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 7(11), 1569–1578. doi: 10.1002/smll.201100191
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi: 10.1063/1.448118
  • Biegler-König, F., Schönbohm, J., & Bayles, D. (2001) AIM2000–A Program to Analyze and Visualize Atoms in Molecules. Journal of Computational Chemistry, 22, 545–559. doi: 10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y
  • Boys, S. F., & Bernardi, F. D. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553–566. doi: 10.1080/00268977000101561
  • Burger, K. N., Staffhorst, R. W., de Vijlder, H. C., Velinova, M. J., Bomans, P. H., Frederik, P. M., & de Kruijff, B. (2002). Nanocapsules: Lipid-coated aggregates of cisplatin with high cytotoxicity. Nature Medicine, 8(1), 81. doi: 10.1038/nm0102-81
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. doi: 10.1063/1.2408420
  • Contreras-Garcia, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J. P., Beratan, D. N., & Yang, W. (2011). NCIPLOT: A program for plotting non-covalent interaction regions. Journal of Chemical Theory and Computation, 7(3), 625–632. doi: 10.1021/ct100641a
  • Cossi, M., Barone, V., Mennucci, B., & Tomasi, J. (1998). Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chemical Physics Letters, 286(3–4), 253–260. doi: 10.1016/S0009-2614(98)00106-7
  • Darden T., York D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092.doi: 10.1063/1.464397
  • Dreyer, D. R., Park, S., Bielawski, C.W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240. doi: 10.1039/B917103G
  • Espinosa, E., & Molins, E. (2000). Retrieving interaction potentials from the topology of the electron density distribution: The case of hydrogen bonds. The Journal of Chemical Physics, 113(14), 5686–5694. doi: 10.1063/1.1290612
  • Espinosa, E., Souhassou, M., Lachekar, H., & Lecomte, C. (1999). Topological analysis of the electron density in hydrogen bonds. Acta Crystallographica Section B: Structural Science, 55(4), 563–572. doi: 10.1107/S0108768199002128
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. doi: 10.1063/1.470117
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R. … Pople, J. A. (2004). Gaussian 03, revision C.02 (or D.01). Pittsburgh, PA: Gaussian Inc.
  • Ghiasi, M., & Hasanzade, Z. (2014). Enzymatic molecular mechanism of the human O-GlcNAcase to design new inhibitors: A quantum mechanical approach. Journal of Carbohydrate Chemistry, 33(1), 20–32. doi: 10.1080/07328303.2013.868471
  • Glendening, E. D., Reed, A. E., Carpenter, J. E., & Weinhold, F. (1992). NBO, version 3.1. Pittsburgh, PA: Gaussian.
  • Guinn, E. J., Pegram, L. M., Capp, M. W., Pollock, M. N., & Record, M. T. (2011). Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proceedings of the National Academy of Sciences, 108(41), 16932–16937. doi: 10.1073/pnas.1109372108
  • Guinn, E. J., Schwinefus, J. J., Cha, H. K., McDevitt, J. L., Merker, W. E., Ritzer, R., & Kerins, M. J. (2013). Quantifying functional group interactions that determine urea effects on nucleic acid helix formation. Journal of the American Chemical Society, 135(15), 5828–5838. doi: 10.1021/ja400965n
  • Guo, Q. F., Cao, H., Li, X. H., & Liu, S. W. (2015). Thermosensitive hydrogel drug delivery system containing doxorubicin loaded CS–GO nanocarriers for controlled release drug in situ. Materials Technology, 30(5), 294–300. doi: 10.1179/1753555715Y.0000000006
  • Hasanzade, Z., & Raissi, H. (2017a). Solvent/co-solvent effects on the electronic properties and adsorption mechanism of anticancer drug Thioguanine on Graphene oxide surface as a nanocarrier: Density functional theory investigation and A molecular dynamics. Applied Surface Science, 422, 1030–1041 .doi: 10.1016/j.apsusc.2017.05.245
  • Hasanzade, Z., & Raissi, H. (2017b). Investigation of graphene-based nanomaterial as nanocarrier for adsorption of paclitaxel anticancer drug: A molecular dynamics simulation study. Journal of Molecular Modeling, 23(2), 36. doi: 10.1007/s00894-017-3207-1
  • Hasanzade, Z., & Raissi, H. (2018). Density functional theory calculations and molecular dynamics simulations of the adsorption of ellipticine anticancer drug on graphene oxide surface in aqueous medium as well as under controlled pH conditions. Journal of Molecular Liquids, 255, 269–278. doi: 10.1016/j.molliq.2018.01.159
  • Hesabi, M., & Behjatmanesh-Ardakani, R. (2018). Investigation of carboxylation of carbon nanotube in the adsorption of anti-cancer drug: A theoretical approach. Applied Surface Science, 427, 112–125. doi: 10.1016/j.apsusc.2017.08.044
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hu, Y. J., Liu, Y., Jiang, W., Zhao, R. M., & Qu, S. S. (2005). Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine. Journal of Photochemistry and Photobiology B: Biology, 80(3), 235–242. doi: 10.1016/j.jphotobiol.2005.04.005
  • Lerf, A., He, H., Forster, M., & Klinowski, J. (1998). Structure of graphite oxide revisited. The Journal of Physical Chemistry B, 102(23), 4477–4482. doi: 10.1021/jp9731821
  • Lu, T., & Chen, F. (2012) Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. doi: 10.1002/jcc.22885
  • Luo, M., Chen, X., Zhou, G., Xiang, X., Chen, L., Ji, X., & He, Z. (2012). Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chemical Communications, 48(8), 1126–1128. doi: 10.1039/C2CC16868E
  • Maeda, H., Sawa, T., & Konno, T. (2001). Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. Journal of Controlled Release, 74(1–3), 47–61. doi: 10.1016/S0168-3659(01)00309-1
  • Matsumoto, A., Matsukawa, Y., Suzuki, T., Yoshino, H., & Kobayashi, M. (1997).The polymer-alloys method as a new preparation method of biodegradable microspheres: Principle and application to cisplatin-loaded microspheres. Journal of Controlled Release, 48(1), 19–27. doi: 10.1016/S0168-3659(97)00031-X
  • Mkhoyan, K. A., Contryman, A. W., Silcox, J., Stewart, D. A., Eda, G., Mattevi, C., & Chhowalla, M. (2009). Atomic and electronic structure of graphene-oxide. Nano Letters, 9(3), 1058–1063. doi: 10.1021/nl8034256
  • Nanda, S. S., Papaefthymiou, G. C., & Yi, D. K. (2015). Functionalization of graphene oxide and its biomedical applications. Critical Reviews in Solid State and Materials Sciences, 40(5), 291–315. doi: 10.1080/10408436.2014.1002604
  • Orecchioni, M., Cabizza, R., Bianco, A., & Delogu, L. G. (2015). Graphene as cancer theranostic tool: Progress and future challenges. Theranostics, 5(7), 710. doi: 10.7150/thno.11387
  • Panigrahi, S., Bhattacharya, A., Banerjee, S., & Bhattacharyya, D. (2012). Interaction of nucleobases with wrinkled graphene surface: Dispersion corrected DFT and AFM studies. The Journal of Physical Chemistry C, 116(7), 4374–4379. doi: 10.1021/jp207588s
  • Pearson, R. G. (1988). Absolute electronegativity and hardness: Application to inorganic chemistry. Inorganic Chemistry, 27, 734–740. doi: 10.1021/ic00277a030
  • Pizzo, P. A., & Poplack, D. G. (2015). Principles and practice of pediatric oncology. Philadelphia, PA: Lippincott Williams & Wilkins.
  • Rana, V. K., Choi, M. C., Kong, J. Y., Kim, G. Y., Kim, M. J., Kim, S. H., & Ha, C. S. (2011). Synthesis and drug‐delivery behavior of chitosan‐functionalized graphene oxide hybrid nanosheets. Macromolecular Materials and Engineering, 296(2), 131–140. doi: 10.1002/mame.201000307
  • Ricci, C. G., de Andrade, A. S., Mottin, M., & Netz, P .A. (2010). Molecular dynamics of DNA: Comparison of force fields and terminal nucleotide definitions. The Journal of Physical Chemistry B, 114(30), 9882–9893. doi: 10.1021/jp1035663
  • Safdari, F., Raissi, H., Shahabi, M., & Zaboli, M. (2017). DFT calculations and molecular dynamics simulation study on the adsorption of 5-fluorouracil anticancer drug on graphene oxide nanosheet as a drug delivery vehicle. Journal of Inorganic and Organometallic Polymers and Materials, 27(3), 805–817. doi: 10.1007/s10904-017-0525-9
  • Sarma, A., & Roy, R .K. (2013). Understanding the interaction of nucleobases with chiral semiconducting single-walled carbon nanotubes: An alternative theoretical approach based on density functional reactivity theory. The Journal of Physical Chemistry C, 117(41), 21539–21550. doi: 10.1021/jp4058803
  • Seo, S. B., Yang, J., Hyung, W., Cho, E. J., Lee, T. I., Song, Y. J., & Haam, S. (2007). Novel multifunctional PHDCA/PEI nano-drug carriers for simultaneous magnetically targeted cancer therapy and diagnosis via magnetic resonance imaging. Nanotechnology, 18(47), 475105. doi: 10.1088/0957-4484/18/47/475105
  • Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1(3), 203–212. doi: 10.1007/s12274-008-8021-8
  • Thein-Han, W. W., Kitiyanant, Y., & Misra, R. D. K. (2008). Chitosan as scaffold matrix for tissue engineering. Materials Science and Technology, 24(9), 1062–1075. doi: 10.1179/174328408X341753
  • Thein-Han, W. W., Saikhun, J., Pholpramoo, C., Misra, R. D. K., & Kitiyanant, Y. (2009). Chitosan–gelatin scaffolds for tissue engineering: Physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP–buffalo embryonic stem cells. Acta Biomaterialia, 5(9), 3453–3466. doi: 10.1016/j.actbio.2009.05.012
  • Umadevi, D., & Sastry, G. N. (2011). Quantum mechanical study of physisorption of nucleobases on carbon materials: Graphene versus carbon nanotubes. The Journal of Physical Chemistry Letters, 2(13), 1572–1576. doi: 10.1021/jz200705w
  • Vora, A., Mitchell, C. D., Lennard, L., Eden, T. O., Kinsey, S. E., Lilleyman, J., & Richards, S. M. (2006). Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: A randomised trial. The Lancet, 368(9544), 1339–1348. doi: 10.1016/S0140-6736(06)69558-5
  • Vovusha, H., Sanyal, S., & Sanyal, B. (2013). Interaction of nucleobases and aromatic amino acids with graphene oxide and graphene flakes. The Journal of Physical Chemistry Letters, 4(21), 3710–3718. doi: 10.1021/jz401929h
  • Wu, W., Wieckowski, S., Pastorin, G., Benincasa, M., Klumpp, C., Briand, J. P., & Bianco, A. (2005). Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angewandte Chemie International Edition, 44(39), 6358–6362. doi: 10.1002/anie.200501613
  • Xu, Z., Meher, B. R., Eustache, D., & Wang, Y. (2014). Insight into the interaction between DNA bases and defective graphenes: Covalent or non-covalent. Journal of Molecular Graphics and Modelling, 47, 8–17. doi: 10.1016/j.jmgm.2013.10.007
  • Yang, K., Feng, L., Hong, H., Cai, W., & Liu, Z. (2013). Preparation and functionalization of graphene nanocomposites for biomedical applications. Nature Protocols, 8(12), 2392. doi: 10.1038/nprot.2013.146
  • Yuan, Q., Shah, J., Hein, S. R. D. K., & Misra, R. D. K. (2010). Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomaterialia, 6(3), 1140–1148. doi: 10.1016/j.actbio.2009.08.027
  • Zaboli, M., & Raissi, H. (2018). A combined molecular dynamics simulation and quantum mechanics study on mercaptopurine interaction with the cucurbit [6, 7] urils: Analysis of electronic structure. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 647–658. doi: 10.1016/j.saa.2017.07.058
  • Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., & Guo, S. (2010). Graphene oxide as a matrix for enzyme immobilization. Langmuir, 26(9), 6083–6085. doi: 10.1021/la904014z
  • Zhu, X., Zhang, Y., Huang, H., Zhang, H., Hou, L., & Zhang, Z. (2016). Functionalized graphene oxide-based thermosensitive hydrogel for near-infrared chemo-photothermal therapy on tumor. Journal of Biomaterials Applications, 30(8), 1230–1241.
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of computational chemistry, 32(11), 2359–2368. doi: 10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.