611
Views
16
CrossRef citations to date
0
Altmetric
Research Articles

Biologically active compounds from two members of the Asteraceae family: Tragopogon dubius Scop. and Tussilago farfara L.

, , , , , , , , & show all
Pages 3269-3281 | Received 02 Jul 2018, Accepted 25 Jul 2018, Published online: 24 Nov 2018

References

  • Abedini, A., Roumy, V., Mahieux, S., Biabiany, M., Standaert-Vitse, A., Rivière, C., … Hennebelle, T. (2013). Rosmarinic acid and its methyl ester as antimicrobial components of the hydromethanolic extract of Hyptis atrorubens Poit. (Lamiaceae). Evidence-Based Complementary and Alternative Medicine, 2013, 1–11.
  • Al-Rimawi, F., Rishmawi, S., Ariqat, S. H., Khalid, M. F., Warad, I., & Salah, Z. (2016). Anticancer activity, antioxidant activity, and phenolic and flavonoids content of wild Tragopogon porrifolius plant extracts. Evidence-Based Complementary and Alternative Medicine, 2016, 1–7.
  • An, S. M., Kim, H. J., Kim, J. E., & Boo, Y. C. (2008). Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytotherapy Research, 22, 1200–1207.
  • Ayaz, M., Junaid, M., Ahmed, J., Ullah, F., Sadiq, A., Ahmad, S., & Imran, M. (2014). Phenolic contents, antioxidant and anticholinesterase potentials of crude extract, subsequent fractions and crude saponins from Polygonum hydropiper L. BMC Complementary and Alternative Medicine, 14, 145–153.
  • Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99, 191–203.
  • Baurin, N., Arnoult, E., Scior, T., Do, Q., & Bernard, P. (2002). Preliminary screening of some tropical plants for anti-tyrosinase activity. Journal of Ethnopharmacology, 82, 155–158.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.
  • Bessada, S. M., Barreira, J. C., & Oliveira, M. B. P. (2015). Asteraceae species with most prominent bioactivity and their potential applications: A review. Industrial Crops and Products, 76, 604–615.
  • Cespedes, C. L., Balbontin, C., Avila, J. G., Dominguez, M., Alarcon, J., Paz, C., … Seigler, D. S. (2017). Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves. Food and Chemical Toxicology, 109, 984–995.
  • Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13, 8615–8627.
  • Cho, J. (2006). Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Archives of Pharmacal Research, 29, 699–706.
  • Coşkunçelebi, K., Gültepe, M., & Makbul, S. (2017). Rediscovery of Tragopogon dshimilensis (Asteraceae), endemic to Turkey. Phytotaxa, 316, 51–58.
  • Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)—General Subjects, 1830, 3670–3695.
  • Dent, M., Bursać Kovačević, D., Bosiljkov, T., & Dragović-Uzelac, V. (2017). Polyphenolic composition and antioxidant capacity of indigenous wild Dalmatian sage (Salvia officinalis L.). Croatica Chemica Acta, 90, 1–9.
  • Diuzheva, A., Carradori, S., Andruch, V., Locatelli, M., De Luca, E., Tiecco, M., … Gratteri, P. (2018). Use of innovative (micro) extraction techniques to characterise Harpagophytum procumbens root and its commercial food supplements. Phytochemical Analysis, 29, 233–241.
  • Ertürk, Ö., & Demirbag, Z. (2003). Scorzonare mollis Bieb (Compositae) bitkisinin antimikrobiyal aktivitesi. Ekoloji Çevre Dergisi, 12, 27–31.
  • Flora, S. J. (2009). Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Medicine and Cellular Longevity, 2, 191–206.
  • Gao, H., Huang, Y.-N., Gao, B., Xu, P.-Y., Inagaki, C., & Kawabata, J. (2008). α-Glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chemistry, 106, 1195–1201.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10, 449–461.
  • Gohari, A. R., Saeidnia, S., Shahverdi, A. R., Yassa, N., Malmir, M., Mollazade, K., & Naghinejad, A. R. (2009). Phytochemistry and antimicrobial compounds of Hymenocrater calycinus. EurAsian Journal of BioSciences, 3, 64–68.
  • Granica, S., Piwowarski, J. P., Randazzo, A., Schneider, P., Żyżyńska-Granica, B., & Zidorn, C. (2015). Novel stilbenoids, including cannabispiradienone glycosides, from Tragopogon tommasinii (Asteraceae, Cichorieae) and their potential anti-inflammatory activity. Phytochemistry, 117, 254–266.
  • Grochowski, D. M., Uysal, S., Aktumsek, A., Granica, S., Zengin, G., Ceylan, R., … Tomczyk, M. (2017). In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochemistry Letters, 20, 365–372.
  • Guo, Z., Mohanty, U., Noehre, J., Sawyer, T. K., Sherman, W., & Krilov, G. (2010). Probing the α‐helical structural stability of stapled p53 peptides: Molecular dynamics simulations and analysis. Chemical Biology & Drug Design, 75, 348–359.
  • Iranshahi, M., Rezaee, R., Parhiz, H., Roohbakhsh, A., & Soltani, F. (2015). Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sciences, 137, 125–132.
  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52, 1757–1768.
  • Jang, H., Lee, J. W., Lee, C., Jin, Q., Choi, J. Y., Lee, D., … Lee, M. K. (2016). Sesquiterpenoids from Tussilago farfara inhibit LPS-induced nitric oxide production in macrophage RAW 264.7 cells. Archives of Pharmacal Research, 39, 127–132.
  • Joana Gil‐Chávez, G., Villa, J. A., Fernando Ayala‐Zavala, J., Basilio Heredia, J., Sepulveda, D., Yahia, E. M., & González‐Aguilar, G. A. (2013). Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Comprehensive Reviews in Food Science and Food Safety, 12, 5–23.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of chemical physics, 79, 926–935.
  • Jung, U. J., Lee, M.-K., Park, Y. B., Kang, M. A., & Choi, M.-S. (2006). Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. International Journal of Biochemistry & Cell Biology, 38, 1134–1145.
  • Kacániová, M., Hleba, L., Petrová, J., Felsöciová, S., Pavelková, A., Rovná, K., … Cubon, J. (2013). Antimicrobial activity of Tussilago farfara L. Journal of Microbiology, Biotechnology and Food Sciences, 2, 1343–1350.
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. Journal of Physical Chemistry B, 105, 6474–6487.
  • Kang, U., Park, J., Han, A.-R., Woo, M. H., Lee, J.-H., Lee, S. K., … Seo, E. K. (2016). Identification of cytoprotective constituents of the flower buds of Tussilago farfara against glucose oxidase-induced oxidative stress in mouse fibroblast NIH3T3 cells and human keratinocyte HaCaT cells. Archives of Pharmacal Research, 39, 474–480.
  • Kim, M.-R., Lee, J. Y., Lee, H.-H., Aryal, D. K., Kim, Y. G., Kim, S. K., … Kang, K. W. (2006). Antioxidative effects of quercetin-glycosides isolated from the flower buds of Tussilago farfara L. Food and Chemical Toxicology, 44, 1299–1307.
  • Kim, Y.-M., Jeong, Y.-K., Wang, M.-H., Lee, W.-Y., & Rhee, H.-I. (2005). Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition, 21(6), 756–761.
  • Koc, S., Isgor, B. S., Isgor, Y. G., Shomali Moghaddam, N., & Yildirim, O. (2015). The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets. Pharmaceutical Biology, 53, 746–751.
  • Koeberle, A., & Werz, O. (2014). Multi-target approach for natural products in inflammation. Drug Discovery Today, 19, 1871–1882.
  • Kokoska, L., Polesny, Z., Rada, V., Nepovim, A., & Vanek, T. (2002). Screening of some Siberian medicinal plants for antimicrobial activity. Journal of Ethnopharmacology, 82, 51–53.
  • Kumar, A., Bharti, S. K., & Kumar, A. (2017). Therapeutic molecules against type 2 diabetes: What we have and what are we expecting? Pharmacological Reports, 69, 959–970.
  • Lebada, R., Schreier, A., Scherz, S., Resch, C., Krenn, L., & Kopp, B. (2000). Quantitative analysis of the pyrrolizidine alkaloids senkirkine and senecionine in Tussilago farfara L. by capillary electrophoresis. Phytochemical Analysis, 11, 366–369.
  • Lee, O.-H., & Lee, B.-Y. (2010). Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource Technology, 101, 3751–3754.
  • Li, Z.-Y., Zhi, H.-J., Zhang, F.-S., Sun, H.-F., Zhang, L.-Z., Jia, J.-P., … Qin, X.-M. (2013). Metabolomic profiling of the antitussive and expectorant plant Tussilago farfara L. by nuclear magnetic resonance spectroscopy and multivariate data analysis. Journal of Pharmaceutical and Biomedical Analysis, 75, 158–164.
  • Lim, H. J., Dong, G.-Z., Lee, H. J., & Ryu, J.-H. (2015). In vitro neuroprotective activity of sesquiterpenoids from the flower buds of Tussilago farfara. Journal of Enzyme Inhibition and Medicinal Chemistry, 30, 852–856.
  • Maestro. (2017). 3: Schrödinger Suite 2017-3. In D. E. Shaw (Ed.), Desmond molecular dynamics system. New York, NY: Schrödinger, LLC.
  • Mapunya, M. B., Hussein, A. A., Rodriguez, B., & Lall, N. (2011). Tyrosinase activity of Greyia flanaganii (Bolus) constituents. Phytomedicine, 18, 1006–1012.
  • Mata, A., Proença, C., Ferreira, A., Serralheiro, M., Nogueira, J., & Araújo, M. (2007). Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chemistry, 103, 778–786.
  • McCue, P. P., & Shetty, K. (2004). Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pacific Journal of Clinical Nutrition, 13, 101–106.
  • Mocan, A, Zengin, G, Simirgiotis, M, Schafberg, M, Mollica, A, Vodnar, D. C, … Rohn, S. (2016a). Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: Phytochemical characterization, biological profile, and computational studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 32, 153–168.
  • Mocan, A., Zengin, G., Uysal, A., Gunes, E., Mollica, A., Degirmenci, N. S., … Aktumsek, A. (2016b). Biological and chemical insights of Morina persica L.: A source of bioactive compounds with multifunctional properties. Journal of Functional Foods, 25, 94–109.
  • Moromete, C., Arcuş, M., Bucur, L., & Roşoiu, N. (2014). General data regardıng Tragopogon dubius Scop. species-pharmacognostıc analysıs. Studia Universitatis Vasile Goldis Seria Stiintele Vietii (Life Sciences Series), 24, 399–405.
  • Moromete, C., Badea, V., Arcuş, M., Bucur, L., & Roşoiu, B. (2016). Study of the antibacterial and antifungal effect of the Tragopogon dubius Scop.(Asteraceae) squeous extracts. Studia Universitatis Vasile Goldis Seria Stiintele Vietii (Life Sciences Series), 26(4), 473–478.
  • Mukherjee, P. K., Kumar, V., Mal, M., & Houghton, P. J. (2007). Acetylcholinesterase inhibitors from plants. Phytomedicine, 14, 289–300.
  • Murray, A. P., Faraoni, M. B., Castro, M. J., Alza, N. P., & Cavallaro, V. (2013). Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Current Neuropharmacology, 11, 388–413.
  • Nargis, J., Melati, K., Lai, C.-S., Hasnah, O., Wong, K.-C., Vikneswaran, M., & Khaw, K.-Y. (2013). Antioxidant, anti-cholinesterase and antibacterial activities of the bark extracts of Garcinia hombroniana. African Journal of Pharmacy and Pharmacology, 7, 454–459.
  • Nedelcheva, A., Kostova, N., & Sidjimov, A. (2015). Pyrrolizidine alkaloids in Tussilago farfara from Bulgaria. Biotechnology & Biotechnological Equipment, 29, 1–7.
  • Njila, M., Mahdi, E., Lembe, D., Nde, Z., & Nyonseu, D. (2017) Review on extraction and isolation of plant secondary metabolites. Paper presented at the 7th International Conference on Agricultural, Chemical, Biological and Environmental Sciences (ACBES-2017) May 22–24, 2017, Kuala Lumpur (Malaysia).
  • Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 81, 511–519.
  • Oboh, G., Agunloye, O. M., Akinyemi, A. J., Ademiluyi, A. O., & Adefegha, S. A. (2013). Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochemical Research, 38, 413–419.
  • Ozsurekci, Y., & Aykac, K. (2016). Oxidative stress related diseases in newborns. Oxidative Medicine and Cellular Longevity, 2016, 1–9. doi: 10.1155/2016/2768365
  • Phatak, R. S., & Hendre, A. S. (2014). Total antioxidant capacity (TAC) of fresh leaves of Kalanchoe pinnata. Journal of Pharmacognosy and Phytochemistry, 2, 32–35.
  • Qin, K., Liu, C., Qi, Y., & Li, K. (2014). Evaluation of antioxidant activity of polysaccharides from Tussilago farfara L. by flow injection analysis. Asian Journal of Chemistry, 26, 3073–3076.
  • Release, S. (2015). 4: Maestro (version 10.4). New York, NY: Schrödinger, LLC.
  • Sagdic, O., Ozturk, I., Cankurt, H., & Tornuk, F. (2011). Interaction between some phenolic compounds and probiotic bacterium in functional ice cream production. Food and Bioprocess Technology. 5(8), 2964–2971.
  • Sareedenchai, V., Ganzera, M., Ellmerer, E. P., Lohwasser, U., & Zidorn, C. (2009). Phenolic compounds from Tragopogon porrifolius L. Biochemical Systematics and Ecology, 37, 234–236.
  • Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., … Iseki, K. (2011). In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 403, 136–138.
  • Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: Antioxidants and beyond. American Journal of Clinical Nutrition, 81, 215–217.
  • Sellem, I., Kaaniche, F., Chakchouk, A. M., & Mellouli, L. (2016). Anti-oxidant, antimicrobial and anti-acetylcholinesterase activities of organic extracts from aerial parts of three Tunisian plants and correlation with polyphenols and flavonoids contents. Bangladesh Journal of Pharmacology, 11, 531–544.
  • Shishov, A., Bulatov, A., Locatelli, M., Carradori, S., & Andruch, V. (2017). Application of deep eutectic solvents in analytical chemistry. A review. Microchemical Journal, 135, 33–38.
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6, 1509–1519.
  • Singh, B., Sahu, P., & Sharma, M. (2002). Anti-inflammatory and antimicrobial activities of triterpenoids from Strobilanthes callosus Nees. Phytomedicine, 9(4), 355–359.
  • Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49–55.
  • Smyrska-Wieleba, N., Wojtanowski, K. K., & Mroczek, T. (2017). Comparative HILIC/ESI-QTOF-MS and HPTLC studies of pyrrolizidine alkaloids in flowers of Tussilago farfara and roots of Arnebia euchroma. Phytochemistry Letters, 20, 339–349.
  • Solanki, I., Parihar, P., & Parihar, M. S. (2016). Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochemistry International, 95, 100–108.
  • Song, K.-K., Chen, Q.-X., Wang, Q., Qiu, L., & Huang, H. (2005). Inhibitory effects of 4-vinylbenzaldehyde and 4-vinylbenzoic acid on the activity of mushroom tyrosinase. Journal of Enzyme Inhibition and Medicinal Chemistry, 20, 239–243.
  • Sung, W. S., & Lee, D. G. (2010). Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure and Applied Chemistry, 82, 219–226.
  • Turker, A., & Usta, C. (2008). Biological screening of some Turkish medicinal plant extracts for antimicrobial and toxicity activities. Natural Product Research, 22, 136–146.
  • Twilley, D., Langhansová, L., Palaniswamy, D., & Lall, N. (2017). Evaluation of traditionally used medicinal plants for anticancer, antioxidant, anti-inflammatory and anti-viral (HPV-1) activity. South African Journal of Botany, 112, 494–500.
  • Uddin, M. J., Abdullah-Al-Mamun, M., Biswas, K., Asaduzzaman, M., & Rahman, M. M. (2016). Assessment of anticholinesterase activities and antioxidant potentials of Anisomeles indica relevant to the treatment of Alzheimer’s disease. Oriental Pharmacy and Experimental Medicine, 16, 113–121.
  • Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7, 65–74.
  • Wang, Q., Shi, Y., Song, K.-K., Guo, H.-Y., Qiu, L., & Chen, Q.-X. (2004). Inhibitory effects of 4-halobenzoic acids on the diphenolase and monophenolase activity of mushroom tyrosinase. Protein Journal, 23, 303–308.
  • Warashina, T., Miyase, T., & Uneo, A. (1991). Novel acylated saponins from Tragopogon porrifolius L. isolation and the structures of tragopogonsaponins AR. Chemical and Pharmaceutical Bulletin, 39, 388–396.
  • WHO. (2012). Dementia: A public health priority. Retrieved from http://www.who.int/mental_health/
  • WHO. (2017). Diabetes: Fact sheet. Retrieved from http://www.who.int/mediacentre/factsheets/fs312/en/
  • Wojdylo, A., Oszmianski, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940–949.
  • Wu, D., Zhang, M., Zhang, C., & Wang, Z. (2008). Chromones from the flower buds of Tussilago farfara. Biochemical Systematics and Ecology, 36, 219–222.
  • Xie, L.-P., Chen, Q.-X., Huang, H., Wang, H.-Z., & Zhang, R.-Q. (2003). Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochemistry, 68, 487–491.
  • Xue, S.-Y., Li, Z.-Y., Zhi, H.-J., Sun, H.-F., Zhang, L.-Z., Guo, X.-Q., & Qin, X.-M. (2012). Metabolic fingerprinting investigation of Tussilago farfara L. by GC–MS and multivariate data analysis. Biochemical Systematics and Ecology, 41, 6–12.
  • Yamamoto, K., Miyake, H., Kusunoki, M., & Osaki, S. (2011). Steric hindrance by 2 amino acid residues determines the substrate specificity of isomaltase from Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 112, 545–550.
  • Yeh, C.-C., Kao, S.-J., Lin, C.-C., Wang, S.-D., Liu, C.-J., & Kao, S.-T. 2007. The immunomodulation of endotoxin-induced acute lung injury by hesperidin in vivo and in vitro. Life Sciences, 80, 1821–1831.
  • Zaidi, K. U., Ali, A. S., Ali, S. A., & Naaz, I. (2014). Microbial tyrosinases: Promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochemistry Research International, 2014, 1–16.
  • Zengin, G., Aktumsek, A., Ceylan, R., Uysal, S., Mocan, A., Guler, G. O., … Soković, M. (2017). Shedding light on the biological and chemical fingerprints of three Achillea species (A. biebersteinii, A. millefolium and A. teretifolia). Food & Function, 8, 1152–1165.
  • Zengin, G., Nithiyanantham, S., Locatelli, M., Ceylan, R., Uysal, S., Aktumsek, A., … Maskovic, P. (2016). Screening of in vitro antioxidant and enzyme inhibitory activities of different extracts from two uninvestigated wild plants: Centranthus longiflorus subsp. longiflorus and Cerinthe minor subsp. auriculata. European Journal of Integrative Medicine, 8, 286–292.
  • Zhao, P., Li, L., Tang, Z., & Li, W. (2012). Isolation, characterization and antioxidant activities of polysaccharides from Tussilago farfara. Asian Journal of Chemistry, 24, 2707–2714.
  • Zhu, F., Asada, T., Sato, A., Koi, Y., Nishiwaki, H., & Tamura, H. (2014). Rosmarinic acid extract for antioxidant, antiallergic, and α-glucosidase inhibitory activities, isolated by supramolecular technique and solvent extraction from Perilla leaves. Journal of Agricultural and Food Chemistry, 62(4), 885–892.
  • Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International, 2014, 1–12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.