224
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Cross-talk between allosteric and orthosteric binding sites of γ-amino butyric acid type A receptors (GABAA-Rs): A computational study revealing the structural basis of selectivity

, , &
Pages 3065-3080 | Received 02 Mar 2018, Accepted 30 Jul 2018, Published online: 04 Jan 2019

References

  • Accelrys Inc. (2013). Accelrys, discovery studio modeling environment (version 4.0). San Diego, CA: Author.
  • Ain, Q. U., Owen, R. M., Omoto, K., Torella, R., Bulusu, K. C., Pryde, D. C., …, Bender, A. (2016). Analysis of differential efficacy and affinity of GABAA (α1/α2) selective modulators. Molecular Pharmaceutics, 13, 4001–4012. doi: 10.1021/acs.molpharmaceut.6b00813
  • Alhambra, C., Becker, C., Blake, T., Chang, A. H., Damewood, J. R., Daniels, T., …, Chapdelaine, M. J. (2011). Development and SAR of functionally selective allosteric modulators of GABAA receptors. Bioorganic & Medicinal Chemistry, 19, 2927–2938. doi: 10.1016/j.bmc.2011.03.035
  • Amin, J., Brooks-Kayal, A., & Weiss, D. S. (1997). Two tyrosine residues on the alpha subunit are crucial for benzodiazepine binding and allosteric modulation of gamma-aminobutyric acid A receptors. Molecular Pharmacology, 51, 833–841. doi: 10.1124/mol.51.5.833
  • Atack, J. R. (2008). GABA(A) receptor subtype-selective efficacy: TPA023, an alpha2/alpha3 selective non-sedating anxiolytic and alpha5IA, an alpha5 selective cognition enhancer. CNS Neuroscience & Therapeutics, 14, 25–35. doi: 10.1111/j.1527-3458.2007.00034.x
  • Atack, J. R. (2009). Subtype-selective GABAA receptor modulation yields a novel pharmacological profile: The design and development of TPA023. Advances in Pharmacology, 57, 137–185. doi: 10.1016/S1054-3589(08)57004-9
  • Atack, J. R. (2010). Development of subtype-selective GABAA receptor compounds for the treatment of anxiety, sleep disorders and epilepsy. In: J.M. Monti, S.R. Pandi-perumal, & H. Möhler (Eds.), GABA and sleep: Molecular, functional and clinical aspects (pp. 25–72). Basel, Switzerland: Springer Basel. doi: 10.1007/978-3-0346-0226-6-2
  • Atack, J.R. (2011). GABAA receptor subtype-selective modulators. I. α2/α3-selective agonists as non-sedating anxiolytics. Current Topics in Medicinal Chemistry, 11, 1176–1202. doi: 10.2174/156802611795371350
  • Atack, J. R., Wafford, K. A., Tye, S. J., Cook, S. M., Sohal, B., Pike, A., …, McKernan, R. M. (2006). TPA023 [7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine], an agonist selective for alpha2- and alpha3-containing GABAA receptors, is a nonsedating anxiolytic in rodents and primates. Journal of Pharmacology and Experimental Therapeutics, 316, 410–422. doi: 10.1124/jpet.105.089920
  • Auerbach, A. (2013). The energy and work of a ligand-gated ion channel. Journal of Molecular Biology, 425, 1461–1475. doi: 10.1016/j.jmb.2013.01.027
  • Baumann, S. W., Baur, R., & Sigel, E. (2003). Individual properties of the two functional agonist sites in GABA(A) receptors. The Journal of Neuroscience, 23, 11158–11166.
  • Baur, R., & Sigel, E. (2005). Benzodiazepines affect channel opening of GABAA receptors induced by either agonist binding site. Molecular Pharmacology, 67, 1005–1008. doi: 10.1124/mol.104.008151
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648. doi: 10.1063/1.464913
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces (pp. 331–342). Dordrecht, The Netherlands: Reidel. doi: 10.1007/978-94-015-7658-1_21
  • Bergmann, R., Kongsbak, K., Sørensen, P.L., Sander, T., & Balle, T. (2013). A unified model of the GABA(A) receptor comprising agonist and benzodiazepine binding sites. PLoS One, 8, e52323. doi: 10.1371/journal.pone.0052323
  • Bianchi, M. T., & Macdonald, R. L. (2001). Agonist trapping by GABAA receptor channels. The Journal of Neuroscience, 21, 9083–9091.
  • Bloom, F. E., & Iversen, L. L. (1971). Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography. Nature, 229, 628–630. doi: 10.1038/229628a0
  • Blum, B. P., & Mann, J. J. (2002). The GABAergic system in schizophrenia. The International Journal of Neuropsychopharmacology, 5, 159–179. doi: 10.1017/S1461145702002894
  • Buhr, A., Bianchi, M. T., Baur, R., Courtet, P., Pignay, V., Boulenger, J.P., …, Sigel, E. (2002). Functional characterization of the new human GABA(A) receptor mutation beta3(R192H). Human Genetics, 111, 154–160. doi: 10.1007/s00439-002-0766-7
  • Campo-Soria, C., Chang, Y., & Weiss, D. S. (2006). Mechanism of action of benzodiazepines on GABAA receptors. British Journal of Pharmacology, 148, 984–990. doi: 10.1038/sj.bjp.0706796
  • Cappelli, A. (2008). Synthesis and structure-activity relationship studies in peripheral benzodiazepine receptor ligands related to alpidem. Bioorganic & Medicinal Chemistry, 16, 3428–3437. doi: 10.1016/j.bmc.2007.06.044
  • Chen, X., Jacobs, G., de Kam, M.L., Jaeger, J., Lappalainen, J., Maruff, P., …, van Gerven, J. (2015). AZD6280, a novel partial γ-aminobutyric acid A receptor modulator, demonstrates a pharmacodynamically selective effect profile in healthy male volunteers. Journal of Clinical Psychopharmacology, 35, 22–33. doi: 10.1097/JCP.0000000000000251
  • Connolly, C. N., Krishek, B. J., McDonald, B. J., Smart, T. G., & Moss, S. J. (1996). Assembly and cell surface expression of heteromeric and homomeric gamma-aminobutyric acid type A receptors. Journal of Biological Chemistry, 271, 89–96. doi: 10.1074/jbc.271.1.89
  • Corringer, P. J., Baaden, M., Bocquet, N., Delarue, M., Dufresne, V., Nury, H., …, Van Renterghem, C. (2010). Atomic structure and dynamics of pentameric ligand-gated ion channels: New insight from bacterial homologues. The Journal of Physiology, 588, 565–572. doi: 10.1113/jphysiol.2009.183160
  • Cromer, B. A., Morton, C. J., & Parker, M. W. (2002). Anxiety over GABA(A) receptor structure relieved by AChBP. Trends in Biochemical Science, 27, 280–287. doi: 10.1016/S0968-0004(02)02092-3
  • Dahl, A. C. E., Chavent, M., & Sansom, M. S. (2012). Bendix: intuitive helix geometry analysis and abstraction. Bioinformatics, 28, 2193–2194. doi: 10.1093/bioinformatics/bts357
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: a N.log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092. doi: 10.1063/1.464397
  • Da Settimo, F., Taliani, S., Trincavelli, M. L., Montali, M., & Martini, C. (2007). GABA A/Bz receptor subtypes as targets for selective drugs. Current Medicinal Chemistry, 14, 2680–2701. doi: 10.2174/092986707782023190
  • DeLorey, T. M., & Olsen, R. W. (1992). Gamma-aminobutyric acidA receptor structure and function. Journal of Biological Chemistry, 267, 16747–16750.
  • De Smet, F., Christopoulos, A., & Carmeliet, P. (2014). Allosteric targeting of receptor tyrosine kinases. Nature Biotechnology, 32, 1113–1120. doi: 10.1038/nbt.3028.
  • Downing, S. S., Lee, Y. T., Farb, D. H., & Gibbs, T. T. (2005). Benzodiazepine modulation of partial agonist efficacy and spontaneously active GABAA receptors supports an allosteric model of modulation. British Journal of Pharmacology, 145, 894–906. doi: 10.1038/sj.bjp.0706251
  • Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C., & Scharf, M. (1995). The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. Journal of Computational Chemistry, 16, 273–284. doi: 10.1002/jcc.540160303
  • Falcó, J. L., Piqué, M., González, M., Buira, I., Méndez, E., Terencio, J., …, Guglietta, A. (2006). Synthesis, pharmacology and molecular modeling of N-substituted 2-phenyl-indoles and benzimidazoles as potent GABA(A) agonists. European Journal of Medicinal Chemistry, 41, 985–990. doi: 10.1016/j.ejmech.2006.03.031
  • Fischer, B. D., Schlitt, R. J., Hamade, B. Z., Rehman, S., Ernst, M., Poe, M. M., …, Cook, J. M. (2017). Pharmacological and antihyperalgesic properties of the novel α2/3 preferring GABAA receptor ligand MP-III-024. Brain Research Bulletin, 131, 62–69. doi: 10.1016/j.brainresbull.2017.03.001
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., …, Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47, 1739–1749. doi: 10.1021/jm0306430
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., …, Fox. D. J. (2009). Gaussian 09, Revision A.1. Wallingford, CT: Gaussian, Inc.
  • Gallager, D. W., & Tallman, J. F. (1983). Consequences of benzodiazepine receptor occupancy. Neuropharmacology, 22, 1493–1498.
  • Gao, F., Bren, N., Burghardt, T. P., Hansen, S., Henchman, R. H., Taylor, P., …, Sine, S. M. (2005). Agonist-mediated conformational changes in acetylcholine-binding protein revealed by simulation and intrinsic tryptophan fluorescence. Journal of Biological Chemistry, 280, 8443–8451. doi: 10.1074/jbc.M412389200
  • Gielen, M. C., Lumb, M. J., & Smart, T. G. (2012). Benzodiazepines modulate GABAA receptors by regulating the preactivation step after GABA binding. The Journal of Neuroscience, 32, 5707–5715. doi: 10.1523/JNEUROSCI.5663-11.2012
  • Goldschen-Ohm, M. P., Wagner, D. A., & Jones, M. V. (2011). Three arginines in the GABAA receptor binding pocket have distinct roles in the formation and stability of agonist-versus antagonist-bound complexes. Molecular Pharmacology, 80, 647–656. doi: 10.1124/mol.111.072033
  • Guarnera, E., & Berezovsky, I. N. (2016). Structure-based statistical mechanical model accounts for the causality and energetics of allosteric communication. PLoS Computational Biology,12, e1004678. doi: 10.1371/journal.pcbi.1004678.
  • Hansen, S. B., Sulzenbacher, G., Huxford, T., Marchot, P., Taylor, P., & Bourne, Y. (2005). Structures of aplysia Achbp complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO Journal, 24, 3635–3646. doi: 10.1038/sj.emboj.7600828
  • Hanson, S. M., Morlock, E. V., Satyshur, K. A., & Czajkowski, C. (2008). Structural requirements for eszopiclone and zolpidem binding to the gamma-aminobutyric acid type-A (GABAA) receptor are different. Journal of Medicinal Chemistry, 51, 7243–7252. doi: 10.1021/jm800889m
  • Henchman, R.H., Wang, H.L., Sine, S.M., Taylor, P., & McCammon, J.A. (2005). Ligand-induced conformational change in the alpha7 nicotinic receptor ligand binding domain. Biophysical Journal, 88, 2564–2576. doi: 10.1529/biophysj.104.053934
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447. doi: 10.1021/ct700301q
  • Hilf, R. J. C., & Dutzler, R. (2008). X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature, 452, 375–379. doi: 10.1038/nature06717.
  • Humphrey, W., Dalk, A., & Schulten, K. (1996). VMD-visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38. doi: 10.1016/0263-7855(96)00018-5
  • Indurthi, D. C., Lewis, T. M., Ahring, P. K., Balle, T., Chebib, M., & Absalom, N. L. (2016). Ligand binding at the α4-α4 agonist-binding site of the α4β2 nAChR triggers receptor activation through a pre-activated conformational state. PLoS One, 11, e0161154. doi: 10.1371/journal.pone.0161154.
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., …, Shenkin, P. S. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55, 351–367. doi: 10.1002/prot.10613
  • Johnston, G. A. (2005). GABAA receptor channel pharmacology. Current Pharmaceutical Design, 11, 1867–1885. doi: 10.2174/1381612054021024
  • Kalueff, A. V., & Nutt, D. J. (2007). Role of GABA in anxiety and depression. Depression and Anxiety, 24, 495–517. doi: 10.1002/da.20262
  • Korpi, E. R., Mattila, M. J., Wisden, W., & Lüddens, H. (1997). GABA(A)-receptor subtypes: Clinical efficacy selectivity of benzodiazepine site ligands. Annals of Medicine, 29, 275–282. doi: 10.3109/07853899708999348
  • Kurochkin, I. V., Guarnera, E., Wong, J. H., Eisenhaber, F., & Berezovsky, I. N. (2017). Toward allosterically increased catalytic activity of insulin-degrading enzyme against amyloid peptides. Biochemistry, 56, 228–239. doi: 10.1021/acs.biochem.6b00783.
  • Laskowski, R. A. (2001). PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Research, 29, 221–222. doi: 10.1093/nar/29.1.221
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK—A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291. doi: 10.1107/S0021889892009944
  • Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8, 477–486. doi: 10.1007/BF00228148
  • Lavoie, A. M., & Twyman, R.E. (1996). Direct evidence for diazepam modulation of GABAA receptor microscopic affinity. Neuropharmacology, 35, 1383–1392. doi: 10.1016/S0028-3908(96)00077-9
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. doi: 10.1103/PhysRevB.37.785
  • Lemoine, D., Jiang, R., Taly, A., Chataigneau, T., Specht, A., & Grutter, T. (2012). Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. Chemical Reviews, 112, 6285–6318. doi: 10.1021/cr3000829
  • Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I., Word, J. M., Prisant, M. G., …, Richardson D. C. (2003). Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins, 50, 437–450. doi: 10.1002/prot.10286
  • Lüscher, B. P., Baur, R., Goeldner, M., & Sigel, E. (2012). Influence of GABA(A) receptor α subunit isoforms on the benzodiazepine binding site. PLoS One, 7, e42101. doi: 10.1371/journal.pone.0042101
  • Macdonald, R. L., & Kang, J.Q. (2009). Molecular pathology of genetic epilepsies associated with GABAA receptor subunit mutations. Epilepsy Currents, 9, 18–23. doi: 10.1111/j.1535-7511.2008.01278.x
  • Maksay, G., Thompson, S. A., & Wafford, K.A. (2000). Allosteric modulators affect the efficacy of partial agonists for recombinant GABAA receptors. British Journal of Pharmacology, 129, 1794–1800. doi: 10.1038/sj.bjp.0703259
  • McKernan, R. M., Rosahl, T. W., Reynolds, D. S., Sur, C., Wafford, K. A., Atack, J. R., …, Whiting, P. J. (2000). Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nature Neuroscience, 3, 587–592. doi: 10.1038/75761
  • McKernan, R. M., Wafford, K., Quirk, K., Hadingham, K. L., Harley, E. A., Ragan, C. I., & Whiting, P. J. (1995). The pharmacology of the benzodiazepine site of the GABA-A receptor is dependent on the type of gamma-subunit present. Journal of Receptors and Signal Transduction Research, 15, 173–183. doi: 10.3109/10799899509045215
  • Miller, P. S., & Aricescu, A. R. (2014). Crystal structure of a human GABAA receptor. Nature, 512, 270–275. doi: 10.1038/nature13293
  • Miller, P. S., & Smart, T. G. (2010). Binding activation and modulation of Cys-loop receptors. Trends in Pharmacology Science, 31, 161–174. doi: 10.1016/j.tips.2009.12.005
  • Mitternacht, S., & Berezovsky, I. N. (2011). Coherent conformational degrees of freedom as a structural basis for allosteric communication. PLoS Computational Biology, 7, e1002301. doi: 10.1371/journal.pcbi.1002301
  • Möhler, H. (2006). GABA(A) receptor diversity and pharmacology. Cell and Tissue Research, 326, 505–516. doi: 10.1007/s00441-006-0284-3
  • Mohler, H., Fritschy, J. M., & Rudolph, U. (2002). A new benzodiazepine pharmacology. Journal of Pharmacology and Experimental Therapeutics, 300, 2–8. doi: 10.1124/jpet.300.1.2
  • Motlagh, H. N., Wrabl, J. O., Li, J., & Hilser, V. J. (2014). The ensemble nature of allostery. Nature 508, 331–339. doi: 10.1038/nature13001
  • Mozrzymas, J. W., Barberis, A., Mercik, K., & Zarnowska, E. D. (2003). Binding sites, singly bound states, and conformation coupling shape GABA-evoked currents. Journal of Neurophysiology, 89, 871–883. doi: 10.1152/jn.00951.2002
  • Newell, J. G., & Czajkowski, C. (2003). The GABAA receptor alpha 1 subunit Pro174-Asp191 segment is involved in GABA binding and channel gating. Journal of Biological Chemistry, 278, 13166–13172.
  • Nosé, S. A. (1984). Molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52, 255–268. doi: 10.1074/jbc.M211905200
  • Olsen, R. W., & Sieghart, W. (2008). International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyricacid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacology Reviews, 60, 243–260. doi: 10.1124/pr.108.00505
  • Oostenbrink, C., Villa, A., Mark, A. E., & Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656–1676. doi: 10.1002/jcc.20090
  • Padgett, C. L., & Lummis, S. C. (2008). The F-loop of the GABAA receptor gamma2 subunit contributes to benzodiazepine modulation. Journal of Biological Chemistry, 283, 2702–2708. doi: 10.1074/jbc.M705699200
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52, 7182–7190. doi: 10.1063/1.328693
  • Paul, M. (2016). MD simulation studies to decode the path of ligand entry into GABAA receptor orthosteric sites (master’s thesis). National Institute of Pharmaceutical Education and Research, Department of Pharmacoinformatics, Kolkata, India.
  • Payghan, P. V., Bera, I., Bhattacharyya, D., & Ghoshal, N. (2016). Capturing state-dependent dynamic events of GABAA-receptors: A microscopic look into the structural and functional insights. Journal of Biomolecular Structure and Dynamics, 34, 1818–1837. doi: 10.1080/07391102.2015.1094410
  • Pei, J., Kim, B. H., & Grishin, N.V. (2008). PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Research, 36, 2295–2300. doi: 10.1093/nar/gkn072
  • Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer, S., Kettenmann, H., Schofield, P. R., & Seeburg, P. H. (1989). Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338, 582–585. doi: 10.1038/338582a0
  • Purohit, P., & Auerbach, A. (2009). Unliganded gating of acetylcholine receptor channels. Proceedings of the National Academy of Sciences of the United States of America, 106, 115–120. doi: 10.1073/pnas.0809272106
  • Richter, L., de Graaf. C., Sieghart, W., Varagic, Z., Mörzinger, M., de Esch, I.J., …, Ernst, M. (2012). Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nature Chemical Biology, 8, 455–464. doi: 10.1038/nchembio
  • Rogers, C. J., Twyman, R. E., & Macdonald, R. L. (1994). Benzodiazepine and β-carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. Journal of Physiology, 475, 69–82. doi: 10.1113/jphysiol.1994.sp020050
  • Rudolph, U., & Knoflach, F. (2011). Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nature Reviews Drug Discovery, 10, 685–697. doi: 10.1038/nrd3502
  • Rüsch, D., & Forman, S. A. (2005). Classic benzodiazepines modulate the open-close equilibrium in α1β2γ2L γ-aminobutyric acid type A receptors. Anesthesiology, 102, 783–792.
  • Sancar, F., & Czajkowski, C. (2011). Allosteric modulators induce distinct movements at the GABA-binding site interface of the GABA-A receptor. Neuropharmacology, 60, 520–528. doi: 10.1016/j.neuropharm.2010.11
  • Sander, T., Frølund, B., Bruun, A. T., Ivanov, I., McCammon, J. A., & Balle, T. (2011). New insights into the GABA(A) receptor structure and orthosteric ligand binding: Receptor modeling guided by experimental data. Proteins, 79, 1458–1477. doi: 10.1002/prot.22975
  • Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., …, Barnard, E. A. (1987). Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature, 328, 221–227. doi: 10.1038/328221a0
  • Schrödinger LLC. (2010). The PyMOL Molecular Graphics System (version 1.3). New York, NY: Author. Retrieved from http://www.pymol.org.
  • Schüttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D, 60, 1355–1363. doi: 10.1107/S0907444904011679
  • Scott-Stevens, P., Atack, J.R., Sohal, B., & Worboys, P. (2005). Rodent pharmacokinetics and receptor occupancy of the GABAA receptor subtype selective benzodiazepine site ligand L-838417. Biopharmaceutics & Drug Disposition, 26, 13–20. doi: 10.1002/bdd.423
  • Serfozo, P., & Cash, D.J. (1992). Effect of a benzodiazepine (chlordiazepoxide) on a GABAA receptor from rat brain. Requirement of only one bound GABA molecule for channel opening. FEBS Letters, 310, 55–59. doi: 10.1016/0014-5793(92)81145-C
  • Sherman, W., Day, T., Jacobson, M. P., Friesner, R. A., & Farid, R. (2006). Novel procedure for modeling ligand/receptor induced fit effects. Journal of Medicinal Chemistry, 49, 534–553. doi: 10.1021/jm050540c
  • Sieghart, W. (2006). Structure pharmacology and function of GABAA receptor subtypes. Advances in Pharmacology, 54, 231–263. doi: 10.1016/S1054-3589(06)54010-4
  • Sieghart, W. (2007). Subunit composition and structure of GABAA receptor subtypes. In S. J. Enna & H. Möhler (Eds.), The receptors: The GABA receptors (pp. 69–86). New York, NY: Humana Press Inc. doi: 10.1007/978-1-59745-465-0_4
  • Sieghart, W., & Sperk, G. (2002). Subunit composition, distribution and function of GABA(A) receptor subtypes. Current Topics in Medicinal Chemistry, 2, 795–816.doi: 10.2174/1568026023393507
  • Sigel, E. (2002). Mapping of the benzodiazepine recognition site on GABA(A) receptors. Current Topics in Medicinal Chemistry, 2, 833–839. doi: 10.2174/1568026023393444
  • Sigel, E., Baur, R., Trube, G., Möhler, H., & Malherbe, P. (1990). The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron, 5, 703–711. doi:https://doi.org/10.1016/0896-6273(90)90224-4
  • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A., & Sansom, M. S. (1996). HOLE: a program for the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics, 14, 354–360. doi: 10.1016/S0263-7855(97)00009-X
  • Smith, G. B., & Olsen, R. W. (1995). Functional domains of GABAA receptors. Trends in Pharmacological Science, 16, 162–168.
  • Smith, T. A. (2001). Type a gamma-aminobutyric acid (GABAA) receptor subunits and benzodiazepine binding: Significance to clinical syndromes and their treatment. British Journal of Biomedical Science, 58, 111–121.
  • Study, R. E., & Barker, J. L. (1981). Diazepam and (−)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of γ-aminobutyric acid responses in cultured central neurons. Proceedings of the National Academy of Sciences of the United States of America, 78, 7180–7184.
  • The UniProt Consortium. (2013). Update on activities at the Universal Protein Resource (UniProt). Nucleic Acids Research, 41, D43–D47. Retrieved from: http://www.uniprot.org.
  • Thompson, A. J., Lester, H. A., & Lummis, S. C. (2010). The structural basis of function in Cys-loop receptors. Quarterly Reviews of Biophysics, 43, 449–499. doi: 10.1017/S0033583510000168
  • Twyman, R. E., Rogers, C. J., & Macdonald, R. L. (1989). Differential regulation of γ-aminobutyric acid receptor channels by diazepam and phenobarbital. Annals of Neurology, 25, 213–220. doi: 10.1002/ana.410250302
  • Unwin, N. (1995). Acetylcholine receptor channel imaged in the open state. Nature, 373, 37–43. doi: 10.1038/373037a0
  • van Nierop, P., Keramidas, A., Bertrand, S., van Minnen, J., Gouwenberg, Y., Bertrand, D., & Smit, A. B. (2005). Identification of molluscan nicotinic acetylcholine receptor (nAChR) subunits involved in formation of cation- and anion-selective nAChRs. The Journal of Neuroscience, 25, 10617–10626. doi: 10.1523/JNEUROSCI.2015-05.2005
  • Vijayan, R.S., Bhattacharyya, D., & Ghoshal, N. (2012a). Deciphering the binding mode of Zolpidem to GABA(A) α1 receptor-insights from molecular dynamics simulation. Journal of Molecular Modeling, 18, 1345–1354. doi: 10.1007/s00894-011-1142-0
  • Vijayan, R. S., Trivedi, N., Roy, S. N., Bera, I., Manoharan, P., Payghan, P. V., …Ghoshal, N. (2012b). Modeling the closed and open state conformations of the GABA(A) ion channel–plausible structural insights for channel gating. Journal of Chemical Information and Modeling, 521, 2958–2969. doi: 10.1021/ci300189a
  • Wagner, D. A., Czajkowski, C., & Jones, M. V. (2004). An arginine involved in GABA binding and unbinding but not gating of the GABA-A receptor. The Journal of Neuroscience, 24, 2733–2741. doi: 10.1523/JNEUROSCI.4316-03.2004
  • Wolf, M.G., Hoefling, M., Aponte-Santamaría, C., Grubmüller, H., &Groenhof, G. (2010). g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. Journal of Computational Chemistry, 31, 2169–2174. doi: 10.1002/jcc.21507

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.