361
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Screening for the selective inhibitors of MMP-9 from natural products based on pharmacophore modeling and molecular docking in combination with bioassay experiment, hybrid QM/MM calculation, and MD simulation

, , , , , & show all
Pages 3135-3149 | Received 23 Jun 2018, Accepted 31 Jul 2018, Published online: 18 Sep 2018

References

  • AnalytiCon Discovery. (2017). AnalytiCon Discovery. Potsdam, Germany: GmbH.
  • Baldwin, R. M., Haghandish, N., Daneshmand, M., Amin, S., Paris, G., Falls, T. J., … Cote, J. (2015). Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget, 6(5), 3013–3032.
  • Barbault, F., & Maurel, F. (2012). Is inhibition process better described with MD(QM/MM) simulations? The case of urokinase type plasminogen activator inhibitors. Journal of Computational Chemistry, 33(6), 607–616.
  • Bausch, D., Pausch, T., Krauss, T., Hopt, U. T., Fernandez-del-Castillo, C., Warshaw, A. L., … Keck, T. (2011). Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma. Angiogenesis, 14(3), 235–243.
  • Brown, G. T., & Murray, G. I. (2015). Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. Journal of Pathology, 237(3), 273–281.
  • Chou, C. H., Teng, C. M., Tzen, K. Y., Chang, Y. C., Chen, J. H., & Cheng, J. C. H. (2012). MMP-9 from sublethally irradiated tumor promotes Lewis lung carcinoma cell invasiveness and pulmonary metastasis. Oncogene, 31(4), 458–468.
  • Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Cancer therapy - Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 295(5564), 2387–2392.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N▪log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092.
  • Demain, A. L., & Vaishnav, P. (2011). Natural products for cancer chemotherapy. Microbial Biotechnology, 4(6), 687–699.
  • Discovery Studio. (2010). Discovery Studio. Version 3.0, San Diego, CA: Accelrys Inc.
  • Elewa, M. A. F., Al-Gayyar, M. M., Schaalan, M. F., Abd El Galil, K. H., Ebrahim, M. A., & El-Shishtawy, M. M. (2015). Hepatoprotective and anti-tumor effects of targeting MMP-9 in hepatocellular carcinoma and its relation to vascular invasion markers. Clinical & Experimental Metastasis, 32(5), 479–493.
  • Fabre, B., Ramos, A., & de Pascual-Teresa, B. (2014). Targeting matrix metalloproteinases: Exploring the dynamics of the S1' pocket in the design of selective, small molecule inhibitors. Journal of Medicinal Chemistry, 57(24), 10205–10219.
  • Farina, A. R., & Mackay, A. R. (2014). Gelatinase B/MMP-9 in tumour pathogenesis and progression. Cancers, 6(1), 240–296.
  • Field, M. J., Bash, P. A., & Karplus, M. (1990). A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. Journal of Computational Chemistry, 11(6), 700–733.
  • Fujita, M., Nakao, Y., Matsunaga, S., van Soest, R. W. M., Itoh, Y., Seiki, M., & Fusetani, N. (2003). Callysponginol sulfate A, an MT1-MMP inhibitor isolated from the marine sponge Callyspongia truncata. Journal of Natural Products, 66(4), 569–571.
  • Gilson, M. K., Liu, T. Q., Baitaluk, M., Nicola, G., Hwang, L., & Chong, J. (2016). BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Research, 44(D1), D1045–D1053.
  • Huang, H. B., Liu, N. N., Guo, H. P., Liao, S. Y., Li, X. F., Yang, C. S., … Liu, J. B. (2012). L-carnitine is an endogenous HDAC inhibitor selectively inhibiting cancer cell growth in vivo and in vitro. PLoS One, 7(11), e49062.
  • Iokibe, K., Azumi, K., & Tachikawa, H. (2007). Surface diffusion of a Zn adatom on a Zn(001) surface: A DFT study. Journal of Physical Chemistry C, 111(36), 13510–13516.
  • Jin, U. H., Lee, J. Y., Kang, S. K., Kim, J. K., Park, W. H., Kim, J. G., … Kim, C. H. (2005). A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: Isolation and identification from methanol extract of Euonymus alatus. Life Sciences, 77(22), 2760–2769.
  • John, S., Thangapandian, S., Sakkiah, S., & Lee, K. W. (2010). Identification of potent virtual leads to design novel indoleamine 2,3-dioxygenase inhibitors: Pharmacophore modeling and molecular docking studies. European Journal of Medicinal Chemistry, 45(9), 4004–4012.
  • Johnson, L. L., Dyer, R., & Hupe, D. J. (1998). Matrix metalloproteinases. Current Opinion in Chemical Biology, 2(4), 466–471.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935.
  • Leelananda, S. P., & Lindert, S. (2016). Computational methods in drug discovery. Beilstein Journal of Organic Chemistry, 12, 2694–2718.
  • Li, A. X., Barbault, F., Maurel, F., Delamar, M., & Wang, B. S. (2008). Interaction mode and selectivity of the 2PU inhibitor with the CDK4 and CDK2 cyclin-dependant kinases: A molecular dynamics study. Journal of Molecular Structure: THEOCHEM, 849(1–3), 62–75.
  • Lin, H., & Truhlar, D. G. (2007). QM/MM: What have we learned, where are we, and where do we go from here? Theoretical Chemistry Accounts, 117(2), 185–199.
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249.
  • Mannello, F., Tonti, G., & Papa, S. (2005). Matrix metalloproteinase inhibitors as anticancer therapeutics. Current Cancer Drug Targets, 5(4), 285–298.
  • Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., & Corbeil, C. R. (2008). Towards the development of universal, fast and highly accurate docking/scoring methods: A long way to go. British Journal of Pharmacology, 153, S7–S26.
  • Mondal, S., Bandyopadhyay, S., Ghosh, M. K., Mukhopadhyay, S., Roy, S., & Mandal, C. (2012). Natural products: Promising resources for cancer drug discovery. Anti-Cancer Agents in Medicinal Chemistry, 12(1), 49–75.
  • Overall, C. M., & Lopez-Otin, C. (2002). Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nature Reviews Cancer, 2(9), 657–672.
  • Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671–6687.
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341.
  • Sakkiah, S., Thangapandian, S., John, S., Kwon, Y. J., & Lee, K. W. (2010). 3D QSAR pharmacophore based virtual screening and molecular docking for identification of potential HSP90 inhibitors. European Journal of Medicinal Chemistry, 45(6), 2132–2140.
  • Stote, R. H., & Karplus, M. (1995). Zinc binding in proteins and solution: A simple but accurate nonbonded representation. Proteins-Structure Function and Genetics, 23(1), 12–31.
  • Tiwari, M., & Lee, J. K. (2010). Molecular modeling studies of L-arabinitol 4-dehydrogenase of Hypocrea jecorina: Its binding interactions with substrate and cofactor. Journal of Molecular Graphics & Modelling, 28(8), 707–713.
  • Verma, R. P., & Hansch, C. (2007). Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorganic & Medicinal Chemistry, 15(6), 2223–2268.
  • Wang, L. Y., Li, X., Zhang, S. D., Lu, W. Q., Liao, S., Liu, X. F., … Li, H. L. (2012). Natural products as a gold mine for selective matrix metalloproteinases inhibitors. Bioorganic & Medicinal Chemistry, 20(13), 4164–4171.
  • Whittaker, M., Floyd, C. D., Brown, P., & Gearing, A. J. H. (1999). Design and therapeutic application of matrix metalloproteinase inhibitors. Chemical Reviews, 99(9), 2735–2776.
  • Wierzchacz, C., Su, E., Kolander, J., & Gebhardt, R. (2009). Differential inhibition of matrix metalloproteinases-2, -9, and-13 activities by selected anthraquinones. Planta Medica, 75(4), 327–329.
  • Yang, S. Y. (2010). Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discovery Today, 15(11–12), 444–450.
  • Yin, S., Dahlbom, M. G., Canfield, P. J., Hush, N. S., Kobayashi, R., & Reimers, J. R. (2007). Assignment of the Q(y) absorption spectrum of photosystem-i from thermosynechococcus elongatus based on CAM-B3LYP calculations at the PW91-optimized protein structure. Journal of Physical Chemistry B, 111(33), 9923–9930.
  • Zhang, J., Li, H., Fan, Y. R., & Zhou, X. (2012). Mechanisms of interaction between luteolin and the catalytic zinc ion in matrix metalloproteinases: a computational study. Journal of Physical Organic Chemistry, 25(12), 1306–1314.
  • Zhang, J., Lu, T., Jiang, C., Zou, J. W., Cao, F. Q., & Chen, Y. D. (2009). Mechanisms for chemical transformations of (R,R)-tartaric acid on Cu(110): A first principles study. Journal of Chemical Physics, 131(14), 144703.
  • Zhou, Z. G., Yao, Q. Z., Lei, D., Zhang, Q. Q., & Zhang, J. (2014). Investigations on the mechanisms of interactions between matrix metalloproteinase 9 and its flavonoid inhibitors using a combination of molecular docking, hybrid quantum mechanical/molecular mechanical calculations, and molecular dynamics simulations. Canadian Journal of Chemistry, 92(9), 821–830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.