386
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Glycan binding and specificity of viral influenza neuraminidases by classical molecular dynamics and replica exchange molecular dynamics simulations

, , , &
Pages 3354-3365 | Received 29 May 2018, Accepted 03 Aug 2018, Published online: 25 Nov 2018

References

  • Al-Muharrmi, Z. (2010). Understanding the influenza A H1N1 2009 pandemic. Sultan Qaboos University Medical Journal, 10(2), 187–195.
  • Baum, L. G., & Paulson, J. C. (1991). The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. Virology, 180(1), 10–15.
  • Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., …., Kollman, P. A. (2012). AMBER 12. San Francisco, CA: University of California.
  • Chandrasekaran, A., Srinivasan, A., Raman, R., Viswanathan, K., Raguram, S., Tumpey, T. M., … Sasisekharan, R. (2008). Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nature Biotechnology, 26(1), 107–113.
  • Chen, J., Wang, J., Zhang, Q., Chen, K., & Zhu, W. (2015). A comparative study of trypsin specificity based on QM/MM molecular dynamics simulation and QM/MM GBSA calculation. Journal of Biomolecular Structure and Dynamics, 33(12), 2606–2618.
  • Chen, J., Wang, J., Zhang, Q., Chen, K., & Zhu, W. (2015). Probing origin of binding difference of inhibitors to MDM2 and MDMX by polarizable molecular dynamics simulation and QM/MM-GBSA calculation. Scientific Reports, 5(1), 17421.
  • Chen, J., Wang, J., Zhu, W., & Li, G. (2013). A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings. Journal of Computer-Aided Molecular Design, 27(11), 965–974.
  • Chong, A. K. J., Pegg, M. S., Taylor, N. R., & Itzstein, M. (1992). Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus. European Journal of Biochemistry, 207(1), 335–343.
  • Connor, R. J., Kawaoka, Y., Webster, R. G., & Paulson, J. C. (1994). Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology, 205(1), 17–23.
  • Dunbrack, R. (2002). Rotamer libraries in the 21st century. Current Opinion in Structural Biology, 12(4), 431–440.
  • França de Barros, J., Jr, Sales Alviano, D., da Silva, M. H., Dutra Wigg, M., Sales Alviano, C., Schauer, R., & dos Santos Silva Couceiro, J. N. (2003). Characterization of sialidase from an influenza A (H3N2) virus strain: Kinetic parameters and substrate specificity. Intervirology, 46(4), 199–206.
  • Gambaryan, A. S., Tuzikov, A. B., Piskarev, V. E., Yamnikova, S. S., Lvov, D. K., Robertson, J. S., … Matrosovich, M. N. (1997). Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: Non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology, 232(2), 345–350.
  • Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., … Shu, Y. (2013). Human infection with a novel avian-origin influenza A (H7N9) virus. New England Journal of Medicine, 368(20), 1888–1897.
  • Garcia, J.-M., Lai, J. C. C., Haselhorst, T., Choy, K. T., Yen, H.-L., Peiris, J. S. M., … Nicholls, J. M. (2014). Investigation of the binding and cleavage characteristics of N1 neuraminidases from avian, seasonal, and pandemic influenza viruses using saturation transfer difference nuclear magnetic resonance. Influenza and Other Respiratory Viruses, 8(2), 235–242.
  • Gaymard, A., Le Briand, N., Frobert, E., Lina, B., & Escuret, V. (2016). Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clinical Microbiology and Infection, 22(12), 975–983.
  • Gräter, F., Schwarzl, S. M., Dejaegere, A., Fischer, S., & Smith, J. C. (2005). Protein/ligand binding free energies calculated with quantum mechanics/molecular mechanics. The Journal of Physical Chemistry B, 109(20), 10474–10483.
  • Hay, A. J., Gregory, V., Douglas, A. R., & Lin, Y. P. (2001). The evolution of human influenza viruses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1416), 1861–1870.
  • Ibrahim, M. A. A. (2011). Performance assessment of semiempirical molecular orbital methods in describing halogen bonding: Quantum mechanical and quantum mechanical/molecular mechanical-molecular dynamics study. Journal of Chemical Information and Modeling, 51(10), 2549–2559.
  • Ito, T., Couceiro, J. N., Kelm, S., Baum, L. G., Krauss, S., Castrucci, M. R., … Kawaoka, Y. (1998). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. Journal of Virology, 72(9), 7367–7373.
  • Iuliano, A. D., Jang, Y., Jones, J., Davis, C. T., Wentworth, D. E., Uyeki, T. M., … Jernigan, D. B. (2017). Increase in human infections with avian influenza A(H7N9) virus during the fifth epidemic—China, October 2016–February 2017. Morbidity and Mortality Weekly Report, 66(9), 254–255.
  • Jongkon, N., & Sangma, C. (2012). Receptor recognition mechanism of human influenza A H1N1 (1918), avian influenza A H5N1 (2004), and pandemic H1N1 (2009) neuraminidase. Journal of Molecular Modeling, 18(1), 285–293.
  • Kar, P., & Knecht, V. (2012). Mutation-induced loop opening and energetics for binding of tamiflu to influenza N8 neuraminidase. Journal of Physical Chemistry B, 116(21), 6137–6149.
  • Kati, W. M., Montgomery, D., Maring, C., Stoll, V. S., Giranda, V., Chen, X., … Norbeck, D. W. (2001). Novel α- and β-amino acid inhibitors of influenza virus neuraminidase. Antimicrobial Agents and Chemotherapy, 45(9), 2563–2570.
  • Khuntawee, W., Rungrotmongkol, T., Wolschann, P., Pongsawasdi, P., Kungwan, N., Okumura, H., & Hannongbua, S. (2016). Conformation study of ɛ-cyclodextrin: Replica exchange molecular dynamics simulations. Carbohydrate Polymers, 141, 99–105.
  • Kirschner, K. N., Yongye, A. B., Tschampel, S. M., GonzÁLez-OuteiriÑO, J., Daniels, C. R., Foley, B. L., & Woods, R. J. (2008). GLYCAM06: A generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry, 29(4), 622–655.
  • Kobasa, D., Kodihalli, S., Luo, M., Castrucci, M. R., Donatelli, I., Suzuki, Y., … Kawaoka, Y. (1999). Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase. Journal of Virology, 73, 6743–6751.
  • Kobasa, D., Wells, K., & Kawaoka, Y. (2001). Amino acids responsible for the absolute sialidase activity of the influenza A virus neuraminidase: Relationship to growth in the duck intestine. Journal of Virology, 75(23), 11773–11780.
  • Lipatov, A. S., Govorkova, E. A., Webby, R. J., Ozaki, H., Peiris, M., Guan, Y., … Webster, R. G. (2004). Influenza: Emergence and control. Journal of Virology, 78(17), 8951–8959.
  • Liu, D., Shi, W., Shi, Y., Wang, D., Xiao, H., Li, W., … Gao, G. F. (2013). Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: Phylogenetic, structural, and coalescent analyses. Lancet, 381(9881), 1926–1932.
  • Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M. R., … Kawaoka, Y. (2000). Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. Journal of Virology, 74(18), 8502–8512.
  • Matrosovich, M. N., Gambaryan, A. S., Teneberg, S., Piskarev, V. E., Yamnikova, S. S., Lvov, D. K., … Karlsson, K.-A. (1997). Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology, 233(1), 224–234.
  • Meeprasert, A., Hannongbua, S., & Rungrotmongkol, T. (2014). Key binding and susceptibility of NS3/4A serine protease inhibitors against hepatitis C virus. Journal of Chemical Information and Modeling, 54(4), 1208–1217.
  • Meeprasert, A., Khuntawee, W., Kamlungsua, K., Nunthaboot, N., Rungrotmongkol, T., & Hannongbua, S. (2012). Binding pattern of the long acting neuraminidase inhibitor laninamivir towards influenza A subtypes H5N1 and pandemic H1N1. Journal of Molecular Graphics and Modelling, 38, 148–154.
  • Meng, E. C., Pettersen, E. F., Couch, G. S., Huang, C. C., & Ferrin, T. E. (2006). Tools for integrated sequence–structure analysis with UCSF Chimera. BMC Bioinformatics, 7, 339.
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321.
  • Mitnaul, L. J., Matrosovich, M. N., Castrucci, M. R., Tuzikov, A. B., Bovin, N. V., Kobasa, D., & Kawaoka, Y. (2000). Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. Journal of Virology, 74(13), 6015–6020.
  • Mochalova, L., Kurova, V., Shtyrya, Y., Korchagina, E., Gambaryan, A., Belyanchikov, I., & Bovin, N. (2007). Oligosaccharide specificity of influenza H1N1 virus neuraminidases. Archives of Virology, 152(11), 2047–2057.
  • Olsson, M. H., Sondergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. Journal of Chemical Theory and Computation, 7(2), 525–537.
  • Onsirisakul, N., Nakakita, S., Boonarkart, C., Kongchanagul, A., Suptawiwat, O., Puthavathana, P., … Auewarakul, P. (2014). Substrate specificity of avian influenza H5N1 neuraminidase. World Journal of Virology, 3(4), 30–36.
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Structure, Function, and Bioinformatics, 55(2), 383–394.
  • Pettersen, E., Goddard, T., Huang, C., Couch, G., Greenblatt, D., Meng, E., & Ferrin, T. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Phanich, J., Rungrotmongkol, T., Kungwan, N., & Hannongbua, S. (2016a). Role of R292K mutation in influenza H7N9 neuraminidase toward oseltamivir susceptibility: MD and MM/PB(GB)SA study. Journal of Computer-Aided Molecular Design, 30(10), 917–926.
  • Phanich, J., Rungrotmongkol, T., Sindhikara, D., Phongphanphanee, S., Yoshida, N., Hirata, F., … Hannongbua, S. (2016b). A 3D-RISM/RISM study of the oseltamivir binding efficiency with the wild-type and resistance-associated mutant forms of the viral influenza B neuraminidase. Protein Science, 25(1), 147–158.
  • Raab, M., & Tvaroška, I. (2011). The binding properties of the H5N1 influenza virus neuraminidase as inferred from molecular modeling. Journal of Molecular Modeling, 17(6), 1445–1456.
  • Re, S., Miyashita, N., Yamaguchi, Y., & Sugita, Y. (2011). Structural diversity and changes in conformational equilibria of biantennary complex-type N-glycans in water revealed by replica-exchange molecular dynamics simulation. Biophysical Journal, 101(10), L44–L46.
  • Rogers, G. N., & D'Souza, B. L. (1989). Receptor binding properties of human and animal H1 influenza virus isolates. Virology, 173(1), 317–322.
  • Rogers, G. N., & Paulson, J. C. (1983). Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology, 127(2), 361–373.
  • Rungrotmongkol, T., Malaisree, M., Nunthaboot, N., Sompornpisut, P., & Hannongbua, S. (2010). Molecular prediction of oseltamivir efficiency against probable influenza A (H1N1-2009) mutants: Molecular modeling approach. Amino Acids, 39(2), 393–398.
  • Rungrotmongkol, T., Mulholland, A. J., & Hannongbua, S. (2007). Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex. Journal of Molecular Graphics and Modelling, 26(1), 1–13.
  • Russell, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., … Skehel, J. J. (2006). The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature, 443(7107), 45–49.
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341.
  • Sassaki, G. L., Elli, S., Rudd, T. R., Macchi, E., Yates, E. A., Naggi, A., … Guerrini, M. (2013). Human (α2→6) and avian (α2→3) sialylated receptors of influenza A virus show distinct conformations and dynamics in solution. Biochemistry, 52(41), 7217–7230.
  • Schaduangrat, N., Phanich, J., Rungrotmongkol, T., Lerdsamran, H., Puthavathana, P., & Ubol, S. (2016). The significance of naturally occurring neuraminidase quasispecies of H5N1 avian influenza virus on resistance to oseltamivir: A point of concern. Journal of General Virology, 97(6), 1311–1323.
  • Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., & Kawaoka, Y. (2006). Avian flu: Influenza virus receptors in the human airway. Nature, 440(7083), 435–436.
  • Sindhikara, D. J., Yoshida, N., & Hirata, F. (2012). Placevent: An algorithm for prediction of explicit solvent atom distribution—Application to HIV-1 protease and F-ATP synthase. Journal of Computational Chemistry, 33(18), 1536–1543.
  • So¨derhjelm, P., Aquilante, F., & Ryde, U. (2009). Calculation of protein–ligand interaction energies by a fragmentation approach combining high-level quantum chemistry with classical many-body effects. The Journal of Physical Chemistry B, 113(32), 11085–11094.
  • Stoll, V., Stewart, K. D., Maring, C. J., Muchmore, S., Giranda, V., Gu, Y.-G. Y., … Kempf, D. (2003). Influenza neuraminidase inhibitors: Structure-based design of a novel inhibitor series. Biochemistry, 42(3), 718–727.
  • Sugita, Y., & Okamoto, Y. (1999). Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 314(1–2), 141–151.
  • Taylor, N. R., & von Itzstein, M. (1994). Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. Journal of Medicinal Chemistry, 37(5), 616–624.
  • Thomas, A., Jourand, D., Bret, C., Amara, P., & Field, M. J. (1999). Is there a covalent intermediate in the viral neuraminidase reaction? A hybrid-potential free-energy study. Journal of the American Chemical Society, 121(41), 9693–9702.
  • Tiralongo, J., Pegg, M. S., & von Itzstein, M. (1995). Effect of substrate aglycon on enzyme mechanism in the reaction of sialidase from influenza virus. FEBS Letters, 372(2–3), 148–150.
  • Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., … Donis, R. O. (2013). New world bats harbor diverse influenza A viruses. PLos Pathogens, 9(10), e1003657.
  • Tsui, V., & Case, D. A. (2000). Molecular dynamics simulations of nucleic acids with a generalized born solvation model. Journal of the American Chemical Society, 122(11), 2489–2498.
  • Vavricka, C. J., Li, Q., Wu, Y., Qi, J., Wang, M., Liu, Y., … Gao, G. F. (2011). Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PLos Pathogens, 7(10), e1002249.
  • Vavricka, C. J., Liu, Y., Kiyota, H., Sriwilaijaroen, N., Qi, J., Tanaka, K., … Gao, G. F. (2013). Influenza neuraminidase operates via a nucleophilic mechanism and can be targeted by covalent inhibitors. Nature Communications, 4(1), 1491.
  • von Itzstein, M. (2007). The war against influenza: Discovery and development of sialidase inhibitors. Nature Reviews. Drug Discovery, 6(12), 967–974.
  • Wagner, R., Matrosovich, M., & Klenk, H. D. (2002). Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Reviews in Medical Virology, 12(3), 159–166.
  • WHO. (2010). Influenza (Seasonal). Retrieved from http://www.who.int/mediacentre/factsheets/fs211/en/index.html
  • Wichapong, K., Rohe, A., Platzer, C., Slynko, I., Erdmann, F., Schmidt, M., & Sippl, W. (2014). Application of docking and QM/MM-GBSA rescoring to screen for novel Myt1 kinase inhibitors. Journal of Chemical Information and Modeling, 54(3), 881–893.
  • Wu, Y., Bi, Y., Vavricka, C. J., Sun, X., Zhang, Y., Gao, F., … Gao, G. F. (2013). Characterization of two distinct neuraminidases from avian-origin human-infecting H7N9 influenza viruses. Cell Research, 23(12), 1347–1355.
  • Xavier Suresh, M., & Veluraja, K. (2003). Conformations of terminal sialyloligosaccharide fragments—A molecular dynamics study. Journal of Theoretical Biology, 222(3), 389–402.
  • Xiong, X., Martin, S. R., Haire, L. F., Wharton, S. A., Daniels, R. S., Bennett, M. S., … Gamblin, S. J. (2013). Receptor binding by an H7N9 influenza virus from humans. Nature, 499(7459), 496–499.
  • Xu, D., Newhouse, E. I., Amaro, R. E., Pao, H. C., Cheng, L. S., Markwick, P. R. L.., … Arzberger, P. W. (2009). Distinct glycan topology for avian and human sialopentasaccharide receptor analogues upon binding different hemagglutinins: A molecular dynamics perspective. Journal of Molecular Biology, 387(2), 465–491.
  • Yen, H.-L., Liang, C.-H., Wu, C.-Y., Forrest, H. L., Ferguson, A., Choy, K.-T., … Peiris, M. (2011). Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proceedings of the National Academy of Sciences, 108(34), 14264–14269.
  • York, D. M., Darden, T. A., & Pedersen, L. G. (1993). The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. Journal of Chemical Physics, 99(10), 8345–8348.
  • Zhu, X., McBride, R., Nycholat, C. M., Yu, W., Paulson, J. C., & Wilson, I. A. (2012). Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic acid receptors. Journal of Virology, 86(24), 13371–13383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.