260
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics simulations investigate the pathway of substrate entry active site of rhomboid protease

, , , &
Pages 3445-3455 | Received 19 Apr 2018, Accepted 16 Aug 2018, Published online: 17 Nov 2018

References

  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Genetics, 17(4), 412–425. doi:10.1002/prot.340170408
  • Baker, R. P., & Urban, S. (2012). Architectural and thermodynamic principles underlying intramembrane protease function. Nature Chemical Biology, 8(9), 759–768. doi:10.1038/nchembio.1021
  • Baker, R. P., Young, K., Feng, L., Shi, Y., & Urban, S. (2007). Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proceedings of the National academy of Sciences of the United States America, 104(20), 8257–8262. doi:10.1073/pnas.0700814104
  • Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. V., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israel, April 13–16, 1981 (pp. 331–342). Dordrecht: Springer Netherlands.
  • Chan, E. Y. L., & McQuibban, G. A. (2013). The mitochondrial rhomboid protease: Its rise from obscurity to the pinnacle of disease-relevant genes. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1828(12), 2916–2925. doi:10.1016/j.bbamem.2013.05.012
  • Cho, S., Dickey, S. W., & Urban, S. (2016). Crystal structures and inhibition kinetics reveal a two-stage catalytic mechanism with drug design implications for rhomboid proteolysis. Molecular Cell, 61(3), 329–340. doi:10.1016/j.molcel.2015.12.022
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • De Strooper, B., & Annaert, W. (2010). Novel research horizons for presenilins and gamma-secretases in cell biology and disease. Annual Review of Cell and Developmental Biology, 26(1), 235–260. doi:10.1146/annurev-cellbio-100109-104117
  • De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J. S., … Kopan, R. (1999). A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature, 398(6727), 518–522.
  • Dickey, S. W., Baker, R. P., Cho, S., & Urban, S. (2013). Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell, 155(6), 1270–1281. doi:10.1016/j.cell.2013.10.053
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19), 8577–8593. doi:10.1063/1.470117
  • Freeman, M. (2008). Rhomboid proteases and their biological functions. Annual Review of Genetics, 42(1), 191–210. doi:10.1146/annurev.genet.42.110807.091628
  • Grasso, G., Deriu, M. A., Prat, M., Rimondini, L., Vernè, E., Follenzi, A., & Danani, A. (2015). Cell penetrating peptide adsorption on magnetite and silica surfaces: A computational investigation. Journal of Physical Chemistry B, 119(26), 8239–8246. doi:10.1021/jp512782e
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. doi:10.1021/ct700301q
  • Jochen, S. H., Bert, L. D G., & David van der, S. (2010). g_wham—A free weighted histogram analysis implementation including robust error and autocorrelation estimates. Journal of Chemical Theory and Computation, 6(12), 3713–3720. doi:10.1021/ct100494z
  • Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., & Kollman, P. A. (1992). The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 13(8), 1011–1021. doi:10.1002/jcc.540130812
  • Lemkul, J. A., & Bevan, D. R. (2010). Assessing the stability of Alzheimer's amyloid protofibrils using molecular dynamics. Journal of Physical Chemistry B, 114(4), 1652–1660. doi:10.1021/jp9110794
  • Manolaridis, I., Kulkarni, K., Dodd, R. B., Ogasawara, S., Zhang, Z., Bineva, G., … Barford, D. (2013). Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature, 504(7479), 301–305. doi:10.1038/nature12754
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. doi:10.1002/jcc.20090
  • Petrek, M., Otyepka, M., Banás, P., Kosinová, P., Koca, J., & Damborský, J. (2006). CAVER: A new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics, 7, 316. doi:10.1186/1471-2105-7-316
  • Rawson, R. B., Cheng, D., Brown, M. S., & Goldstein, J. L. (1998). Isolation of cholesterol-requiring mutant Chinese hamster ovary cells with defects in cleavage of sterol regulatory element-binding proteins at site 1. Journal of Biological Chemistry, 273(43), 28261–28269.
  • Schmidt, T. H., & Kandt, C. (2012). LAMBADA and InflateGRO2: Efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. Journal of Chemical Information and Modeling, 52(10), 2657–2669. doi:10.1021/ci3000453
  • Stein, S. A. M., Loccisano, A. E., Firestine, S. M., & Evanseck, J. D. (2006). Chapter 13 Principal Components Analysis: A Review of its Application on Molecular Dynamics Data. In D. C. Spellmeyer (Ed.), Annual Reports in Computaional Chemistry (Vol. 2, pp. 233–261). Amsterdam, Netherlands: Elsevier. doi:10.1016/S1574-1400(06)02013-5
  • Strisovsky, K. (2013). Structural and mechanistic principles of intramembrane proteolysis – Lessons from rhomboids. FEBS Journal, 280(7), 1579–1603. doi:10.1111/febs.12199
  • Strisovsky, K. (2016). Why cells need intramembrane proteases – A mechanistic perspective. Febs Journal, 283(10), 1837–1845. doi:10.1111/febs.13638
  • Strisovsky, K., Sharpe, H. J., & Freeman, M. (2009). Sequence-specific intramembrane proteolysis: Identification of a recognition motif in rhomboid substrates. Molecular Cell, 36(6), 1048–1059. doi:10.1016/j.molcel.2009.11.006
  • Sun, L., Li, X., & Shi, Y. (2016). Structural biology of intramembrane proteases: Mechanistic insights from rhomboid and S2P to gamma-secretase. Current Opinion in Structural Biology, 37, 97–107. doi:10.1016/j.sbi.2015.12.008
  • Urban, S. (2009). Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms. Nature Reviews Microbiology, 7(6), 411–423.
  • Urban, S., & Baker, R. P. (2008). In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells. Biological Chemistry, 389(8), 1107–1115.
  • Urban, S., Lee, J. R., & Freeman, M. (2001). Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell, 107(2), 173–182. doi:10.1016/S0092-8674(01)00525-6
  • Wang, Y., & Ha, Y. (2007). Open-cap conformation of intramembrane protease GlpG. Proceedings of the National Academy of Sciences, 104(7), 2098–2102. doi:10.1073/pnas.0611080104
  • Wang, Y., Zhang, Y., & Ha, Y. (2006). Crystal structure of a rhomboid family intramembrane protease. Nature, 444(7116), 179–180. doi:10.1038/nature05255
  • Weihofen, A., Binns, K., Lemberg, M. K., Ashman, K., & Martoglio, B. (2002). Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science, 296(5576), 2215. doi:10.1126/science.1070925
  • Wu, Z., Yan, N., Feng, L., Oberstein, A., Yan, H., Baker, R. P., … Shi, Y. (2006). Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nature Structural & Molecular Biology, 13(12), 1084–1091. doi:10.1038/nsmb1179
  • Xue, Y., & Ha, Y. (2013). Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease. Journal of Biological Chemistry, 288(23), 16645–16654. doi:10.1074/jbc.M112.438127
  • Zhang, J.-L., Zheng, Q.-C., Li, Z.-Q., & Zhang, H.-X. (2013). How does (E)-2-(acetamidomethylene)succinate bind to its hydrolase? From the binding process to the final result. PLoS One, 8(1), e53811. doi:10.1371/journal.pone.0053811
  • Zhang, J-L., Zheng, Q-C., & Zhang, H-X. (2010). Unbinding of glucose from human pulmonary surfactant protein D studied by steered molecular dynamics simulations. Chemical Physics Letters, 484(4-6), 338–343. doi:10.1016/j.cplett.2009.12.022
  • Zoll, S., Stanchev, S., Began, J., Skerle, J., Lepsik, M., Peclinovska, L., … Strisovsky, K. (2014). Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures. EMBO J, 33(20), 2408–2421. doi:10.15252/embj.201489367

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.