262
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Comparative in silico study of the differences in the structure and ligand interaction properties of three alpha-expansin proteins from Fragaria chiloensis fruit

, , , , , & ORCID Icon show all
Pages 3245-3258 | Received 19 Jun 2018, Accepted 01 Aug 2018, Published online: 25 Nov 2018

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. doi:10.1016/S0022-2836(05)80360-2
  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulation. Nucleic Acids Research, 40(W1), W537–W541. doi:10.1093/nar/gks375
  • Barré, A., & Rougé, P. (2002). Homology modeling of the cellulose-binding domain of a pollen allergen from rye grass: Structural basis for the cellulose recognition and associated allergenic properties. Biochemical and Biophysical Research Communications, 296(5), 1346–1351. doi:10.1016/S0006-291X(02)02091-0
  • Bennett, A. (2002). Biochemical and genetic determinants of cell wall disassembly in ripening fruit: A general model. HortScience, 37, 447–450.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. http://www.rcsb.org/. doi:10.1093/nar/30.1.245
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy minimization and dynamics calculation. Journal of Computational Chemistry, 4(2), 187–217. doi:10.1002/jcc.540040211
  • Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113–116. doi:10.1007/BF02670468
  • Chundawat, S. P. S., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual Review of Chemical and Biomolecular Engineering, 2(1), 121–145. doi:10.1146/annurev-chembioeng-061010-114205
  • Civello, P. M., Powell, A. L. T., Sabehat, A., & Bennett, A. B. (1999). An expansin gene expressed in ripening strawberry fruit. Plant Physiology, 121(4), 1273–1279.
  • Cosgrove, D. J. (2000). Expansive growth of plant cell walls. Plant Physiology and Biochemistry, 38(1-2), 109–124. doi:10.1016/S0981-9428(00)00164-9
  • Cosgrove, D. J., Bedinger, P., & Durachko, D. M. (1997). Group I allergen of grass pollen as cell wall-loosening agents. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6559–6564. doi:10.1073/pnas.94.12.6559
  • Cosgrove, D. J., Li, L. C., Cho, H.-T., Hoffmann-Benning, S., Moore, R. C., & Blecker, D. (2002). The growing world of expansins. Plant and Cell Physiology, 43(12), 1436–1444. doi:10.1093/pcp/pcf180
  • Davies, G. J., Tolley, S. P., Henrissat, B., Hjort, C., & Schu¨Lein, M. (1995). Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 Å resolution. Biochemistry, 34, 16210–16220.
  • Dotto, M. C., Martinez, G. A., & Civello, P. M. (2006). Expression of expansin genes in strawberry varieties with contrasting fruit firmness. Plant Physiology and Biochemistry, 44(5–6), 301–307. doi:10.1016/j.plaphy.2006.06.008
  • Fedorov, A. A., Ball, T., Valenta, R., & Almo, S. C. (1997). X-ray crystal structures of birch pollen profilin and Phl p 2. International Archives of Allergy and Immunology, 113(1–3), 109–113. doi:10.1159/000237520
  • Figueroa, C., Opazo, M. C., Vera, P., Arriagada, O., Díaz, M., & Moya-León, M. A. (2012). Effect of postharvest treatment of calcium and auxin on cell wall composition and expression of cell wall-modifying genes in the Chilean strawberry (Fragaria chiloensis) fruit. Food Chemistry, 132(4), 2014–2022. doi:10.1016/j.foodchem.2011.12.041
  • Figueroa, C., Pimentel, P., Dotto, M., Civello, P. M., Martínez, G., Herrera, R., & Moya-León, M. A. (2009). Expression of five expansin genes during softening of Fragaria chiloensis fruit: Effect of auxin treatment. Postharvest Biology and Technology, 53(1–2), 51–57. doi:10.1016/j.postharvbio.2009.02.005
  • Figueroa, C. R., Pimentel, P., Gaete-Eastman, C., Moya, M., Herrera, R., Caligari, P. D. S., & Moya-León, M. A. (2008). Softening rate of the Chilean strawberry (Fragaria chiloensis) fruit reflects the expression of polygalacturonase and pectate lyase genes. Postharvest Biology and Technology, 49(2), 210–220. doi:10.1016/j.postharvbio.2008.01.018
  • Gaete-Eastman, C., Morales-Quintana, L., Herrera, R., & Moya-León, M. A. (2015). In-silico Analysis of structure and binding site feature of expansin protein from mountain papaya fruit (VpEXPA2), through molecular modelling, docking and dynamics simulation studies. Journal of Molecular Modeling, 21(5), 115. doi:10.1007/s00894-015-2656-7
  • Galaz, S., Morales-Quintana, L., Moya-León, M. A., & Herrera, R. (2013). Structural analysis of the alcohol acyltransferase protein family from Cucumis melo shows that enzyme activity depends on an essential solvent channel. FEBS Journal, 280(5), 1344–1357. doi:10.1111/febs.12127
  • Georgelis, N., Nikolaidis, N., & Cosgrove, D. J. (2015). Bacterial expansins and related proteins from the world of microbes. Applied Microbiology and Biotechnology, 99(9), 3807–3823. doi:10.1007/s00253-015-6534-0
  • Georgelis, N., Tabuchi, A., Nikolaidis, N., & Cosgrove, D. J. (2011). Structure-function analysis of the bacterial expansin EXLX1. Journal of Biological Chemistry, 286(19), 16814–16823. doi:10.1074/jbc.M111.225037
  • Georgelis, N., Yennawar, N. H., & Cosgrove, D. J. (2012). Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proceedings of the National Academy of Sciences of the United States of America, 109(37), 14830–14835. doi:10.1073/pnas.1213200109
  • Guvench, O., Hatcher, E. R., Venable, R. M., Pastor, R. W., & MacKerell, A. D. (2009). CHARMM Additive all-atom force field for glycosidic linkages between hexopyranoses. Journal of Chemical Theory and Computation, 5(9), 2353–2370. doi:10.1021/ct900242e
  • Harrison, E., McQueen-Mason, S., & Manning, K. (2001). Expression of six expansin genes in relation to extension activity in developing strawberry fruit. Journal of Experimental Botany, 52(360), 1437–1446. doi:10.1093/jexbot/52.360.1437
  • Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755. doi:10.1093/bioinformatics/17.8.754
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. doi:10.1016/0263-7855(96)00018-5
  • Ito, S., & Kato, Y. (2002). A study of the structures of xyloglucans from the fruit cell walls of strawberry, persimmon, prune and banana. Journal of Applied Glycoscience, 49(4), 501–504. doi:10.5458/jag.49.501
  • Johansson, P., Brumer, H., Baumann, M. J., Kallas, A. M., Henriksson, H., Denman, S. E., … Jones, T. A. (2004). Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant Cell, 16(4), 874–886. doi:10.1105/tpc.020065
  • Jones, D. T. (1999). Protein secondary structure prediction based on position specific scoring matrices. Journal of Molecular Biology, 292(2), 195–202. doi:10.1006/jmbi.1999.3091
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics., 79(2), 926–935. doi:10.1063/1.445869
  • Kerff, F., Amoroso, A., Herman, R., Sauvage, E., Petrella, S., Filée, P., … Cosgrove, D. J. (2008). Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 16876–16881. doi:10.1073/pnas.0809382105
  • Laine, M., Haapalainen, M., Wahlroos, T., Kankare, K., Nissinen, R., Kassuwi, S., & Metzler, M.C. (2001). The cellulase encoded by the native plasmid of Clavibacter michiganensis subsp. sepedonicus plays a role in virulence and contains an expansin-like domain. Physiological and Molecular Plant Pathology, 57, 221–233. doi:10.1006/pmpp.2000.0301
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. doi:10.1107/S0021889892009944
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three dimensional profiles. Nature, 356(6364), 83–85. doi:10.1038/356083a0
  • MacKerell, A. D. J., Bashford, D., Bellott, M., Dunbrack, R. L. J., Evanseck, J., Field, M. J., … Karplus, M. (1992). Self-consistent parameterization of biomolecules for molecular modeling and condensed phase simulations. FASEB J, 6, A143. doi:10.1021/ct500643c
  • Malathy, S. M., & Ponnuswamy, M. N. (2007). Molecular basis behind the sustrate specificity of polygalacturonase through computational study. Polimer, 48(3), 910–916. doi:10.1016/j.polymer.2006.11.055
  • Marga, F., Grandbois, M., Cosgrove, D. J., & Baskin, T. I. (2005). Cell wall extension results in the coordinate separation of parallel microfibrils: Evidence from scanning electron microscopy and atomic force microscopy. Plant Journal, 43(2), 181–190. doi:10.1111/j.1365-313X.2005.02447.x
  • Mateluna, P., Valenzuela-Riffo, F., Morales-Quintana, L., Herrera, R., & Ramos, P. (2017). Transcriptional and computational study of expansins differentially expressed in response to inclination in radiata pine. Plant Physiology and Biochemistry, 115, 12–24. doi:10.1016/j.plaphy.2017.03.005
  • Mcqueen-Mason, S., & Cosgrove, D. J. (1995). Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiology, 107(1), 87–100. http://www.jstor.org/stable/4276278
  • McQueen-Mason, S., & Cosgrove, D. J. (1994). Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proceedings of the National Academy of Sciences of the United States of America, 91(14), 6574–6578.
  • McQueen-Mason, S., Durachko, D. M., & Cosgrove, D. J. (1992). Two endogenous proteins that induce cell wall extension in plants. Plant Cell, 4, 1425–1433.
  • Morales-Quintana, L., Fuentes, L., Gaete-Eastman, C., Herrera, R., & Moya-León, M. A. (2011). Structural characterization and substrate specificity of VpAAT1 protein related to ester biosynthesis in mountain papaya fruit. Journal of Molecular Graphics & Modelling, 29(5), 635–642. doi:10.1016/j.jmgm.2010.11.011
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi:10.1002/jcc.21256
  • Nardi, C., Escudero, C., Villarreal, N., Martínez, G., & Civello, P. M. (2013). The carbohydrate-binding module of Fragaria x ananassa expansin 2 (CBM-FaEXP2) binds to cell Wall polysaccharides and decreases cell wall enzymes activities ‘in vitro’. Journal of Plant Research, 126(1), 151–159. doi:10.1007/s10265-012-0504-8
  • Park, Y. B., Kafle, K., Lee, C. M., Cosgrove, D. J., & Kim, S. H. (2015). Does cellulose II exist in native alga cell walls? Cellulose structure of Derbesia cell walls studied with SFG, IR and XRD, Cellulose. Cellulose, 22(6), 3531–3540. doi:10.1007/s10570-015-0750-8
  • Pauly, M., Gille, S., Liu, L., Mansoori, N., de Souza, A., Schultink, A., & Xiong, G. (2013). Hemicellulose biosynthesis. Planta, 238(4), 627–642. doi:10.1007/s00425-013-1921-1
  • Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. doi:10.1038/nmeth.1701
  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29, e45. PMCID: PMC55695
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. doi:10.1002/jcc.20289
  • Pimentel, P., Salvatierra, A., Moya-León, M. A., & Herrera, R. (2010). Isolation of genes differentially expressed during development and ripening of Fragaria chiloensis fruit by suppression subtractive hybridization. Journal of Plant Physiology, 167(14), 1179–1187. doi:10.1016/j.jplph.2010.03.006
  • Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. doi:10.1006/jmbi.1993.1626
  • Sampedro, J., & Cosgrove, D. J., (2005). The expansin superfamily. Genome Biology, 6(12), 242. doi:10.1186/gb-2005-6-12-242
  • Schlenkrich M., Brickmann J., MacKerell A. D., & Karplus M. (1996) An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications. In: K. M. Merz & B. Roux (Eds.), Biological Membranes (pp. 31–81). Boston, MA: Birkhäuser Boston. ISBN: 978-1-4684-8582-0. doi:10.1007/978-1-4684-8580-6_2
  • Silveira, R. L., & Skaf, M. S. (2016). Molecular dynamics of the Bacillus subtilis expansin EXLX1: interaction with substrates and structural basis of the lack of activity of mutants. Physical Chemistry Chemical Physics, 18(5), 3510–3521. doi:10.1039/c5cp06674c
  • Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins: Structure, Function, and Genetics, 17(4), 355–362. doi:10.1002/prot.340170404
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. doi:10.1093/nar/22.22.4673
  • Trott, O., & Olson, A. J. (2009). AutoDockVina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31(2), 455–461. doi:10.1002/jcc.21334
  • Vaaje-Kolstad, G., Farkaš, V., Hrmova, M., & Fincher, G. B. (2010). Xyloglucan xyloglucosyl transferases from barley (Hordeum vulgare L.) bind oligomeric and polymeric xyloglucan molecules in their acceptor binding sites. Biochimica et Biophysica Acta, 1800(7), 674–684. doi:10.1016/j.bbagen.2010.04.001
  • Valenzuela-Riffo, F., Ramos, P., & Morales-Quintana, L. (2018). Computational study of FaEXPA1 a strawberry alpha expansin protein, through molecular modeling and molecular dynamics simulation studies. Computational Biology and Chemistry, 76, 79–86. doi:10.1016/j.compbiolchem.2018.05.018
  • Valenzuela-Riffo, F., Tapia, G., Parra-Palma, C., & Morales-Quintana, L. (2015). Understanding the roles of Lys33 and Arg45 in the binding site stability of LjLTP10 an LTP related with drought stress in Lotus japonicus. Journal of Molecular Modeling, 21(10), 270. doi:10.1007/s00894-015-2807-x
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., … MacKerell, A. D. Jr. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force field. Journal of Computational Chemistry, 31, 671–690. doi:10.1002/jcc.21367
  • Vicente, A. R., Saladié, M., Rose, J. K. C., & Labavitch, J. M. (2007). The linkage between cell wall metabolism and fruit softening: looking to the future. Journal of the Science of Food and Agriculture, 87(8), 1435–1448. doi:10.1002/jsfa.2837
  • Wang, C. X., Wang, L., McQueen-Mason, S. J., Pritchard, J., & Thomas, C. R. (2008). pH and expansin action on single suspension-cultured tomato (Lycopersicon esculentum) cells. Journal of Plant Research, 121(5), 527–534. doi:10.1007/s10265-008-0176-6
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–W410. doi:10.1093/nar/gkm290
  • Yennawar, N. H., Li, L. C., Dudzinski, D. M., Tabuchi, A., & Cosgrove, D. J. (2006). Crystal structure and activities of EXPB1 (Zea m1), a β-expansin and group-1 pollen allergen from maize. Proceedings of the National Academy of Sciences of the United States of America, 103(40), 14664–14671. doi:10.1073/pnas.0605979103
  • Zhang, Y., & Skolnick, J. (2004). Scoring function for automated assessment of protein structure template quality. Proteins: Structure, Function, and Bioinformatics, 57(4), 702–710. doi:10.1002/prot.20264

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.