266
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Multicomplex-based pharmacophore modeling in conjunction with multi-target docking and molecular dynamics simulations for the identification of PfDHFR inhibitors

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4181-4199 | Received 24 Jul 2018, Accepted 15 Oct 2018, Published online: 16 Jan 2019

References

  • Abbat, S., Jain, V., & Bharatam, P. V. (2015). Origins of the specificity of inhibitor P218 toward wild-type and mutant Pf DHFR: A molecular dynamics analysis. Journal of Biomolecular Structure and Dynamics, 33(9), 1913–1928.
  • Adane, L., Bhagat, S., Arfeen, M., Bhatia, S., Sirawaraporn, R., Sirawaraporn, W., … Bharatam, P. V. (2014). Design and synthesis of guanylthiourea derivatives as potential inhibitors of Plasmodium falciparum dihydrofolate reductase enzyme. Bioorganic & Medicinal Chemistry Letters, 24(2), 613–617.
  • Adane, L., & Bharatam, P. V. (2009). 3D-QSAR analysis of cycloguanil derivatives as inhibitors of A16V + S108T mutant Plasmodium falciparum dihydrofolate reductase enzyme. Journal of Molecular Graphics and Modelling, 28(4), 357–367.
  • Adane, L., & Bharatam, P. V. (2010). Binding modes of 2, 4-diaminoquinazoline and 2, 4-diaminopteridine analogs to P. falciparum dihydrofolate reductase enzyme: Molecular docking studies. Indian Journal of Pharmaceutical Sciences, 72(3), 324.
  • Adane, L., & Bharatam, P. V. (2011). Computer-aided molecular design of 1H-imidazole-2, 4-diamine derivatives as potential inhibitors of Plasmodium falciparum DHFR enzyme. Journal of Molecular Modeling, 17(4), 657–667.
  • Adane, L., Bharatam, P. V., & Sharma, V. (2010). A common feature-based 3D-pharmacophore model generation and virtual screening: Identification of potential Pf DHFR inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(5), 635–645.
  • Adane, L., Patel, D., & Bharatam, P. V. (2010). Shape‐and chemical feature‐based 3D‐pharmacophore model generation and virtual screening: Identification of potential leads for P. falciparum DHFR enzyme inhibition. Chemical Biology & Drug Design, 75(1), 115–126.
  • Amin, S. A., Adhikari, N., Baidya, S. K., Gayen, S., & Jha, T. (in press). Structural refinement and prediction of potential CCR2 antagonists through validated multi-QSAR modeling studies. Journal of Biomolecular Structure and Dynamics. doi: 10.1080/07391102.2017.1418679
  • Antosiewicz, A., Jarmuła, A., Przybylska, D., Mosieniak, G., Szczepanowska, J., Kowalkowska, A., … Cieśla, J. (2017). Human dihydrofolate reductase and thymidylate synthase form a complex in vitro and co-localize in normal and cancer cells. Journal of Biomolecular Structure and Dynamics, 35(7), 1474–1490.
  • Athar, M., Lone, M. Y., Khedkar, V. M., & Jha, P. C. (2016). Pharmacophore model prediction, 3D-QSAR and molecular docking studies on vinyl sulfones targeting Nrf2-mediated gene transcription intended for anti-Parkinson drug design. Journal of Biomolecular Structure and Dynamics, 34(6), 1282–1297.
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A., & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690.
  • Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., … Tasumi, M. (1977). The Protein Data Bank. European Journal of Biochemistry, 80(2), 319–324.
  • Bietz, S., Urbaczek, S., Schulz, B., & Rarey, M. (2014). Protoss: A holistic approach to predict tautomers and protonation states in protein-ligand complexes. Journal of Cheminformatics, 6(1), 12.
  • Böhm, H.-J. (1994). The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. Journal of Computer-Aided Molecular Design, 8(3), 243–256.
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., … Sacerdoti, F. D. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. Paper presented at the Proceedings of the ACM/IEEE Conference on Supercomputing, Tampa, FL.
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4(2), 187–217.
  • Carrington, H., Crowther, A., Davey, D., Levi, A., & Rose, F. (1951). A metabolite of paludrine with high antimalarial activity. Nature, 168(4288), 1080p
  • Cereto-Massagué, A., Guasch, L., Valls, C., Mulero, M., Pujadas, G., & Garcia-Vallvé, S. (2012). DecoyFinder: An easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics (Oxford, England), 28(12), 1661–1662.
  • Chitnumsub, P., Yavaniyama, J., Vanichtanankul, J., Kamchonwongpaisan, S., Walkinshaw, M. D., & Yuthavong, Y. (2004). Characterization, crystallization and preliminary X‐ray analysis of bifunctional dihydrofolate reductase–thymidylate synthase from Plasmodium falciparum. Acta Crystallographica Section D Biological Crystallography, 60(4), 780–783.
  • Chofor, R., Sooriyaarachchi, S., Risseeuw, M. D. P., Bergfors, T., Pouyez, J., Johny, C., … Van Calenbergh, S. (2015). Synthesis and bioactivity of β-substituted fosmidomycin analogues targeting 1-deoxy-D-xylulose-5-phosphate reductoisomerase. Journal of Medicinal Chemistry, 58(7), 2988–3001.
  • Clark, D. E., & Pickett, S. D. (2000). Computational methods for the prediction of 'drug-likeness'. Drug Discovery Today, 5(2), 49–58.
  • Curd, F., Davey, D., & Rose, F. (1945). Studies on synthetic antimalarial drugs: X.—Some biguanide derivatives as new types of antimalarial substances with both therapeutic and causal prophylactic activity. Annals of Tropical Medicine & Parasitology, 39(3–4), 208–216.
  • D. E. Shaw Research. (2016). Maestro-Desmond Interoperability Tools, Desmond Molecular Dynamics System, New York, NY. Schrödinger, New York, NY.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092.
  • Dasgupta, T., Chitnumsub, P., Kamchonwongpaisan, S., Maneeruttanarungroj, C., Nichols, S. E., Lyons, T. M., … Anderson, K. S. (2009). Exploiting structural analysis, in silico screening, and serendipity to identify novel inhibitors of drug-resistant falciparum malaria. ACS Chemical Biology, 4(1), 29–40.
  • de Souza, F. R., Guimarães, A. P., Cuya, T., de Freitas, M. P., Gonçalves, A. D S., Forgione, P., & Costa França, T. C. (2017). Analysis of Coxiela burnetti dihydrofolate reductase via in silico docking with inhibitors and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 35(13), 2975–2986.
  • Discovery Studio version 4.0. San Diego, CA: Accelrys Software, Inc. Retrieved from www.accelrys.com/products/collaborativescience/biovia-discovery-studio/
  • Egieyeh, S. A., Syce, J., Malan, S. F., & Christoffels, A. (2016). Prioritization of anti-malarial hits from nature: Chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs. Malaria Journal, 15(1), 50.
  • Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., … Overington, J. P. (2012). ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Research, 40(D1), D1100–D1107.
  • Gregson, A., & Plowe, C. V. (2005). Mechanisms of resistance of malaria parasites to antifolates. Pharmacological Reviews, 57(1), 117–145.
  • Güner, O. F. (2000). Pharmacophore perception, development, and use in drug design. La Jolla, CA: Internat'l University Line.
  • Harinasuta, T., Suntharasamai, P., & Viravan, C. (1965). Chloroquine-resistant falciparum malaria in Thailand. Lancet (London, England)), 2(7414), 657–660.
  • Head, J. D., & Zerner, M. C. (1985). A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries. Chemical Physics Letters, 122(3), 264–270.
  • Hunt, S. Y., Detering, C., Varani, G., Jacobus, D. P., Schiehser, G. A., Shieh, H.-M., … Sibley, C. H. (2005). Identification of the optimal third generation antifolate against P. falciparum and P. vivax. Molecular and Biochemical Parasitology, 144(2), 198–205.
  • Jana, S., & Singh, S. K. (2018). Identification of selective MMP-9 inhibitors through multiple e-pharmacophore, ligand-based pharmacophore, molecular docking, and density functional theory approaches. Journal of Biomolecular Structure and Dynamics, 9, 1–22.
  • Japrung, D., Leartsakulpanich, U., Chusacultanachai, S., & Yuthavong, Y. (2007). Conflicting requirements of Plasmodium falciparum dihydrofolate reductase mutations conferring resistance to pyrimethamine-WR99210 combination. Antimicrobial Agents and Chemotherapy, 51(12), 4356–4360.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935.
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236.
  • Kamchonwongpaisan, S., Quarrell, R., Charoensetakul, N., Ponsinet, R., Vilaivan, T., Vanichtanankul, J., … Yuthavong, Y. (2004). Inhibitors of multiple mutants of Plasmodium falciparum dihydrofolate reductase and their antimalarial activities. Journal of Medicinal Chemistry, 47(3), 673–680.
  • Kaur, K., Jain, M., Kaur, T., & Jain, R. (2009). Antimalarials from nature. Bioorganic & Medicinal Chemistry, 17(9), 3229–3256.
  • Kontoyianni, M., McClellan, L. M., & Sokol, G. S. (2004). Evaluation of docking performance: Comparative data on docking algorithms. Journal of Medicinal Chemistry, 47(3), 558–565.
  • Konzuch, S., Umeda, T., Held, J., Hähn, S., Brücher, K., Lienau, C., … Kurz, T. (2014). Binding modes of reverse fosmidomycin analogs toward the antimalarial target IspC. Journal of Medicinal Chemistry, 57(21), 8827–8838.
  • Kunfermann, A., Lienau, C., Illarionov, B., Held, J., Gräwert, T., Behrendt, C. T., … Kurz, T. (2013). IspC as target for antiinfective drug discovery: Synthesis, enantiomeric separation, and structural biology of fosmidomycin thia isosters. Journal of Medicinal Chemistry, 56(20), 8151–8162.
  • Lambrakos, S., Boris, J., Oran, E., Chandrasekhar, I., & Nagumo, M. (1989). A modified shake algorithm for maintaining rigid bonds in molecular dynamics simulations of large molecules. Journal of Computational Physics, 85(2), 473–486.
  • LeadIT version 2.1.8. BioSolveIT GmbH, Sankt Augustin, Germany. Retrieved from www.biosolveit.de/LeadIT
  • Lemcke, T., Christensen, I. T., & Jørgensen, F. S. (1999). Towards an understanding of drug resistance in malaria: Three-dimensional structure of Plasmodium falciparum dihydrofolate reductase by homology building. Bioorganic & Medicinal Chemistry, 7(6), 1003–1011.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25.
  • Lone, M. Y., Athar, M., Gupta, V. K., & Jha, P. C. (2017a). Identification of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors: A combined in-silico and in-vitro analysis. Journal of Molecular Graphics and Modelling, 76, 172–180.
  • Lone, M. Y., Athar, M., Gupta, V. K., & Jha, P. C. (2017b). Prioritization of natural compounds against mycobacterium tuberculosis 3-dehydroquinate dehydratase: A combined in-silico and in-vitro study. Biochemical and Biophysical Research Communications, 491(4), 1105–1111.
  • Lone, M. Y., Kumar, S. P., Athar, M., & Jha, P. C. (2018). Exploration of Mycobacterium tuberculosis structural proteome: An in-silico approach. Journal of Theoretical Biology, 439, 14–23.
  • Lone, M. Y., Manhas, A., Athar, M., & Jha, P. C. (2017). Identification of InhA inhibitors: A combination of virtual screening, molecular dynamics simulations and quantum chemical studies. Journal of Biomolecular Structure and Dynamics, 36(11), 2951–2965.
  • Lu, S.-H., Wu, J. W., Liu, H.-L., Zhao, J.-H., Liu, K.-T., Chuang, C.-K., … Ho, Y. (2011). The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies. Journal of Biomedical Science, 18(1), 8.
  • Manhas, A., Kumar, S. P., & Jha, P. C. (2016). Molecular modeling of Plasmodium falciparum peptide deformylase and structure-based pharmacophore screening for inhibitors. RSC Advances, 6(35), 29466–29485.
  • Manhas, A., Lone, M. Y., & Jha, P. C. (2017). Multicomplex-based pharmacophore modeling coupled with molecular dynamics simulations: An efficient strategy for the identification of novel inhibitors of PfDHODH. Journal of Molecular Graphics and Modelling, 75, 413–430.
  • Manhas, A., Lone, M. Y., & Jha, P. C. (in press). In search of the representative pharmacophore hypotheses of the enzymatic proteome of Plasmodium falciparum: A multicomplex-based approach. Molecular Diversity. doi: 10.1007/s11030-018-9885-5
  • Manhas, A., Patel, A., Lone, M. Y., Jha, P. K., & Jha, P. C. (2018). Identification of PfENR inhibitors: A hybrid structure‐based approach in conjunction with molecular dynamics simulations. Journal of Cellular Biochemistry, 119(10), 8490–8500.
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189.
  • McKie, J. H., Douglas, K. T., Chan, C., Roser, S. A., Yates, R., Read, M., … Sirawaraporn, W. (1998). Rational drug design approach for overcoming drug resistance: Application to pyrimethamine resistance in malaria. Journal of Medicinal Chemistry, 41(9), 1367–1370.
  • Modi, P., Patel, S., & Chhabria, M. T. (2018). Identification of some novel pyrazolo [1, 5-a] pyrimidine derivatives as InhA inhibitors through pharmacophore-based virtual screening and molecular docking. Journal of Biomolecular Structure and Dynamics, 4, 1–14.
  • Nogueira, C. R., & Lopes, L. M. (2011). Antiplasmodial natural products. Molecules, 16(3), 2146–2190.
  • Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511–519.
  • Nzila, A., Rottmann, M., Chitnumsub, P., Kiara, S. M., Kamchonwongpaisan, S., Maneeruttanarungroj, C., … Diagana, T. T. (2010). Preclinical evaluation of the antifolate QN254, 5-chloro-N′ 6′-(2, 5-dimethoxy-benzyl)-quinazoline-2, 4, 6-triamine, as an antimalarial drug candidate. Antimicrobial Agents and Chemotherapy, 54(6), 2603–2610.
  • Osborne, M. J., Schnell, J., Benkovic, S. J., Dyson, H. J., & Wright, P. E. (2001). Backbone dynamics in dihydrofolate reductase complexes: Role of loop flexibility in the catalytic mechanism. Biochemistry, 40(33), 9846–9859.
  • Parenti, M. D., Pacchioni, S., Ferrari, A. M., & Rastelli, G. (2004). Three-dimensional quantitative structure − activity relationship analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors using a pharmacophore generation approach. Journal of Medicinal Chemistry, 47(17), 4258–4267.
  • Phillipson, J. D. (2001). Phytochemistry and medicinal plants. Phytochemistry, 56(3), 237–243.
  • Rarey, M., Kramer, B., & Lengauer, T. (1997). Multiple automatic base selection: Protein–ligand docking based on incremental construction without manual intervention. Journal of Computer-Aided Molecular Design, 11(4), 369–384.
  • Rarey, M., Kramer, B., Lengauer, T., & Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 261(3), 470–489.
  • Rastelli, G., Pacchioni, S., Sirawaraporn, W., Sirawaraporn, R., Parenti, M. D., & Ferrari, A. M. (2003). Docking and database screening reveal new classes of Plasmodium falciparum dihydrofolate reductase inhibitors. Journal of Medicinal Chemistry, 46(14), 2834–2845.
  • Rastelli, G., Sirawaraporn, W., Sompornpisut, P., Vilaivan, T., Kamchonwongpaisan, S., Quarrell, R., … Yuthavong, Y. (2000). Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: Structural basis of antifolate resistance. Bioorganic & Medicinal Chemistry, 8(5), 1117–1128.
  • Sardarian, A., Douglas, K. T., Read, M., Sims, P. F. G., Hyde, J. E., Chitnumsub, P., … Sirawaraporn, W. (2003). Pyrimethamine analogs as strong inhibitors of double and quadruple mutants of dihydrofolate reductase in human malaria parasites. Organic & Biomolecular Chemistry, 1(6), 960–964.
  • Saxena, S., Abdullah, M., Sriram, D., & Guruprasad, L. (2017). Discovery of novel inhibitors of Mycobacterium tuberculosis MurG: Homology modelling, structure based pharmacophore, molecular docking, and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 17, 1–15.
  • Saxena, S., Durgam, L., & Guruprasad, L. (2018). Multiple e-pharmacophore modelling pooled with high-throughput virtual screening, docking and molecular dynamics simulations to discover potential inhibitors of Plasmodium falciparum lactate dehydrogenase (PfLDH). Journal of Biomolecular Structure and Dynamics, 14, 1–17.
  • Sirawaraporn, W., Prapunwattana, P., Sirawaraporn, R., Yuthavong, Y., & Santi, D. (1993). The dihydrofolate reductase domain of Plasmodium falciparum thymidylate synthase-dihydrofolate reductase. Gene synthesis, expression, and anti-folate-resistant mutants. Journal of Biological Chemistry, 83(1), 93–21644.
  • Sirichaiwat, C., Intaraudom, C., Kamchonwongpaisan, S., Vanichtanankul, J., Thebtaranonth, Y., & Yuthavong, Y. (2004). Target guided synthesis of 5-benzyl-2, 4-diamonopyrimidines: Their antimalarial activities and binding affinities to wild type and mutant dihydrofolate reductases from Plasmodium falciparum. Journal of Medicinal Chemistry, 47(2), 345–354.
  • Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y., & Hay, S. I. (2005). The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 434(7030), 214.
  • Sooriyaarachchi, S., Chofor, R., Risseeuw, M. D. P., Bergfors, T., Pouyez, J., Dowd, C. S., … Mowbray, S. L. (2016). Targeting an aromatic hotspot in Plasmodium falciparum 1‐deoxy‐d‐xylulose‐5‐phosphate reductoisomerase with β‐arylpropyl analogues of fosmidomycin. ChemMedChem, 11(18), 2024–2036.
  • SPECS and BioSPECS. (2016). Retrieved from http://www.specs.net/.
  • Stierand, K., & Rarey, M. (2010). Drawing the PDB: Protein-ligand complexes in two dimensions. ACS Medicinal Chemistry Letters, 1(9), 540–545.
  • SYBYL. (1994). TRIPOS Associates Inc, St. Louis, Missouri, USA. Retrieved from http://www.tripos.com/.
  • Tan, D. S. (2004). Current progress in natural product-like libraries for discovery screening. Combinatorial Chemistry & High Throughput Screening, 7(7), 631–643.
  • Tuckerman, M., Berne, B. J., & Martyna, G. J. (1992). Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics, 97(3), 1990–2001.
  • Umeda, T., Tanaka, N., Kusakabe, Y., Nakanishi, M., Kitade, Y., & Nakamura, K. T. (2011). Molecular basis of fosmidomycin's action on the human malaria parasite Plasmodium falciparum. Scientific Reports, 1, 9.
  • Vanichtanankul, J., Taweechai, S., Uttamapinant, C., Chitnumsub, P., Vilaivan, T., Yuthavong, Y., & Kamchonwongpaisan, S. (2012). Combined spatial limitation around residues 16 and 108 of Plasmodium falciparum dihydrofolate reductase explains resistance to cycloguanil. Antimicrobial Agents and Chemotherapy, 56(7), 3928–3935.
  • Vanichtanankul, J., Taweechai, S., Yuvaniyama, J., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., & Yuthavong, Y. (2011). Trypanosomal dihydrofolate reductase reveals natural antifolate resistance. ACS Chemical Biology, 6(9), 905–911.
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623.
  • Vyas, V. K., Ghate, M., & Goel, A. (2013). Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors. Journal of Molecular Graphics and Modelling, 42, 17–25.
  • Wang, N., Ren, J.-X., & Xie, Y. (2018). Identification of novel DHFR inhibitors for treatment of tuberculosis by combining virtual screening with in vitro activity assay. Journal of Biomolecular Structure and Dynamics, 6, 1–8.
  • Wang, Y., Yang, L., Hou, J., Zou, Q., Gao, Q., Yao, W., … Zhang, J. (2018). Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking. Journal of Biomolecular Structure and Dynamics, 12, 1–22.
  • Warhurst, D. C. (1998). Antimalarial drug discovery: Development of inhibitors of dihydrofolate reductase active in drug resistance. Drug Discovery Today, 3(12), 538–546.
  • Warhurst, D. C. (2002). Resistance to antifolates in Plasmodium falciparum, the causative agent of tropical malaria. Science Progress, 85(1), 89–111.
  • Wells, T. N. (2011). Natural products as starting points for future anti-malarial therapies: Going back to our roots?. Malaria Journal, 10(Suppl 1), S3.
  • White, N. J. (2004). Antimalarial drug resistance. The Journal of Clinical Investigation, 113(8), 1084–1092.
  • WHO. (2016). World Health Organization, World Malaria Report 2016. Geneva, Switzerland: Author.
  • Xue, J., Diao, J., Cai, G., Deng, L., Zheng, B., Yao, Y., & Song, Y. (2013). Antimalarial and structural studies of pyridine-containing inhibitors of 1-deoxyxylulose-5-phosphate reductoisomerase. ACS Medicinal Chemistry Letters, 4(2), 278–282.
  • Yuthavong, Y., Tarnchompoo, B., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., Charman, S. A., … Matthews, D. (2012). Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proceedings of the National Academy of Sciences, 109(42), 16823–16828.
  • Yuthavong, Y., Vilaivan, T., Chareonsethakul, N., Kamchonwongpaisan, S., Sirawaraporn, W., Quarrell, R., & Lowe, G. (2000). Development of a lead inhibitor for the A16V + S108T mutant of dihydrofolate reductase from the cycloguanil-resistant strain (T9/94) of Plasmodium falciparum. Journal of Medicinal Chemistry, 43(14), 2738–2744.
  • Yuthavong, Y., Yuvaniyama, J., Chitnumsub, P., Vanichtanankul, J., Chusacultanachai, S., Tarnchompoo, B., … Kamchonwongpaisan, S. (2005). Malarial (Plasmodium falciparum) dihydrofolate reductase-thymidylate synthase: Structural basis for antifolate resistance and development of effective inhibitors. Parasitology, 130(3), 249–259.
  • Yuvaniyama, J., Chitnumsub, P., Kamchonwongpaisan, S., Vanichtanankul, J., Sirawaraporn, W., Taylor, P., … Yuthavong, Y. (2003). Insights into antifolate resistance from malarial DHFR-TS structures. Nature Structural & Molecular Biology, 10(5), 357–365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.