384
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Identification of novel urease inhibitors: pharmacophore modeling, virtual screening and molecular docking studies

, &
Pages 4312-4326 | Received 12 Aug 2018, Accepted 23 Oct 2018, Published online: 24 Dec 2018

References

  • Amtul, Z., Kausar, N., Follmer, C., Rozmahel, R. F., Rahman, A. U., Kazmi, S. A., … Choudhary, M. I. (2006). Cysteine based novel noncompetitive inhibitors of urease(s) – Distinctive inhibition susceptibility of microbial and plant ureases. Bioorganic & Medicinal Chemistry, 14, 6737–6744. doi:10.1016/j.bmc.2006.05.078
  • Ananthula, R. S., Ravikumar, M., Mahmood, S. K., & Kumar, M. N. S. P. (2012). Insights from ligand and structure based methods in virtual screening of selective Ni-peptide deformylase inhibitors. Journal of Molecular Modeling, 18(2), 693–708. doi:10.1007/s00894-011-1068-6
  • Arora, R., & Kakkar, R. (2012). Benzohydroxamic acid and its applications: A review. International Review of Biophysical Chemistry (IREBIC), 3, 212–233.
  • Arora, R., Issar, U., & Kakkar, R. (2018). In silico study of the active site of Helicobacter pylori urease and its inhibition by hydroxamic acids. Journal of Molecular Graphics & Modelling, 83, 64–73. doi:10.1016/j.jmgm.2018.04.018
  • Aslam, M. A. S., Mahmood, S.-U., Shahid, M., Saeed, A., & Iqbal, J. (2011). Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. European Journal of Medicinal Chemistry, 46(11), 5473–5479. doi:10.1016/j.ejmech.2011.09.009
  • Badhani, B., & Kakkar, R. (2017). In silico studies on potential MCF-7 inhibitors: A combination of pharmacophore and 3D-QSAR modeling, virtual screening, molecular docking, and pharmacokinetic analysis. Journal of Biomolecular Structure and Dynamics, 35(9), 1950–1967. doi:10.1080/07391102.2016.1202863
  • Berlicki, Ł., Bochno, M., Grabowiecka, A., Białas, A., Kosikowska, P., & Kafarski, P. (2012). N-substituted aminomethanephosphonic and aminomethane-P-methylphosphinic acids as inhibitors of ureases. Amino Acids, 42(5), 1937–1945. doi:10.1007/s00726-011-0920-4
  • Cavalli, A., Poluzzi, E., De Ponti, F., & Recanatini, M. (2002). Toward a pharmacophore for drugs inducing the long QT syndrome: Insights from a CoMFA study of HERG K + channel blockers. Journal of Medicinal Chemistry, 45(18), 3844–3853. doi:10.1021/jm0208875
  • Ciurli, S., Benini, S., Rypniewski, W. R., Wilson, K. S., Miletti, S., & Mangani, S. (1999). Structural properties of the nickel ions in urease: Novel insights into the catalytic and inhibition mechanisms. Coordination Chemistry Reviews, 190–192, 331–355. doi:10.1016/S0010-8545(99)00093-4
  • ConfGen. (2009). ConfGen, Version 2.1. New York, NY: Schrödinger LLC.
  • Cross, S., & Cruciani, G. (2010). Grid-derived structure-based 3D pharmacophores and their performance compared to docking. Drug Discovery Today: Technologies, 7(4), e213–e219. doi:10.1016/j.ddtec.2010.09.002
  • De Ponti, F., Poluzzi, E., & Montanaro, N. (2001). Organising evidence on QT prolongation and occurrence of Torsades de Pointes with non-antiarrhythmic drugs: A call for consensus. European Journal of Clinical Pharmacology, 57(3), 185–209. doi:10.1007/s002280100290
  • Deora, G. S., Joshi, P., Rathore, V., Kumar, K. L., Ohlyan, R., & Kandale, A. (2013). Pharmacophore modeling and 3D QSAR analysis of isothiazolidinedione derivatives as PTP1B inhibitors. Medicinal Chemistry Research, 22(7), 3478–3484. doi:10.1007/s00044-012-0349-7
  • Dixon, S. L., Smondyrev, A. M., & Rao, S. N. (2006). PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chemical Biology and Drug Design, 67(5), 370–372. doi:10.1111/j.1747-0285.2006.00384.x
  • Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10–11), 647–671. doi:10.1007/s10822-006-9087-6
  • Domínguez, M. J., Sanmartín, C., Font, M., Palop, J. A., San Francisco, S., Urrutia, O., … García-Mina, J. M., (2008). Design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitors. Journal of Agricultural and Food Chemistry, 56(10), 3721–3731. doi:10.1021/jf072901y
  • Duffy, E. M., & Jorgensen, W. L. (2000). Prediction of properties from simulations: Free energies of solvation in hexadecane, octanol, and water. Journal of the American Chemical Society, 122(12), 2878–2888. doi:10.1021/ja993663t
  • Ekins, S., Shimada, J., & Chang, C. (2006). Application of data mining approaches to drug delivery. Advanced Drug Delivery Reviews, 58(12–13), 1409–1430. doi:10.1016/j.addr.2006.09.005
  • Evans, D. J., Jr, Evans, D. G., Kirkpatrick, S. S., & Graham, D. Y. (1991). Characterization of the Helicobacter pylori urease and purification of its subunits. Microbial Pathogenesis, 10(1), 15–26. doi:10.1016/0882-4010(91)90062-F
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., … Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. doi:10.1021/jm051256o
  • Gao, Q., Yang, L., & Zhu, Y. (2010). Pharmacophore based drug design approach as a practical process in drug discovery. Current Computer Aided-Drug Design, 6(1), 37–49. doi:10.2174/157340910790980151
  • Giri, K. V., & Rao, P. S. (1944). Urease activity and ascorbic acid. Nature, 153(3878), 253–254. doi:10.1038/153253b0
  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2! Journal of Molecular Graphics and Modelling, 20(4), 269–276. doi:10.1016/S1093-3263(01)00123-1
  • Gulyaeva, N., Zaslavsky, A., Lechner, P., Chlenov, M., McConnell, O., Chait, A., … Zaslavsky, B. (2003). Relative hydrophobicity and lipophilicity of drugs measured by aqueous two-phase partitioning, octanol-buffer partitioning and HPLC. A simple model for predicting blood–brain distribution. European Journal of Medicinal Chemistry, 38(4), 391–396. doi:10.1016/S0223-5234(03)00044-8
  • Ha, N.-C., Oh, S.-T., Sung, J. Y., Cha, K. A., Lee, M. H., & Oh, B.-H. (2001). Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nature Structural Biology, 8, 505–509. doi:10.1038/88563
  • Harit, T., Malek, F., Bali, B. E., Khan, A., Dalvandi, K., Marasini, B. P., … Choudhary, M. I. (2012). Synthesis and enzyme inhibitory activities of some new pyrazole-based heterocyclic compounds. Medicinal Chemistry Research, 21(10), 2772–2778. doi:10.1007/s00044-011-9804-0
  • Honda, S., Fujioka, T., Tokieda, M., Satoh, R., Nishizono, A., & Nasu, M. (1998). Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. Cancer Research, 58, 4255–4259.
  • Hu, L.-T., & Mobley, H. L. T. (1990). Purification and N-terminal analysis of urease from Helicobacter pylori. Infection and Immunity, 58(4), 992–998.
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC – A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182. doi:10.1021/ci049714 + [InsertedFromOnline
  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757–1768. doi:10.1021/ci3001277
  • Jorgensen, W. L., & Duffy, E. M. (2000). Prediction of drug solubility from Monte Carlo simulations. Bioorganic & Medicinal Chemistry Letters, 10, 1155–1158. doi:10.1016/S0960-894X(00)00172-4
  • Kakkar, R. (2011). Structure-based design of PDHK2 inhibitors from docking studies. International Research Journal of Pharmaceutical Sciences, 1, 50–58.
  • Khan, K. M., Iqbal, S., Lodhi, M. A., Maharvi, G. M., Ullah, Z., Choudhary, M. I., … Erveen, S. (2004). Biscoumarin: New class of urease inhibitors; economical synthesis and activity. Bioorganic & Medicinal Chemistry, 12, 1963–1968. doi:10.1016/j.bmc.2004.01.010
  • Khan, K. M., Wadood, A., Ali, M., Zia-Ullah, Ul-Haq, Z., Lodhi, M. A., … Choudhary, M. I. (2010). Identification of potent urease inhibitors via ligand- and structure-based virtual screening and in vitro assays. Journal of Molecular Graphics and Modelling, 28, 792–798. doi:10.1016/j.jmgm.2010.02.004
  • Kim, H.-Y. (2013). Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry & Endodontics, 38, 52–54. doi:10.5395/rde.2013.38.1.52
  • Kobashi, K., Munakata, K.-I., Takebe, S., & Hase, J.-I. (1980). Therapy for urolithiasis by hydroxamic acids. II. Urease inhibitory potency and urinary excretion rate of hippurohydroxamic acid derivatives. Journal of Pharmacobio-Dynamics, 3(9), 444–450. doi:10.1248/bpb1978.3.444
  • Kobashi, K., Takebe, S., Terashima, N., & Hase, J. (1975). Inhibition of urease activity by hydroxamic acid derivatives of amino acids. Journal of Biochemistry (Biochemistry), 77(4), 837–843. doi:10.1093/oxfordjournals.jbchem.a130791
  • Kot, M., Karcz, W., & Zaborska, W. (2010). 5-Hydroxy-1,4-naphthoquinone (juglone) and 2-hydroxy-1,4-naphthoquinone (lawsone) influence on jack bean urease activity: Elucidation of the difference in inhibition activity. Bioorganic Chemistry, 38(3), 132–137. doi:10.1016/j.bioorg.2010.02.002
  • Kubinyi, H. (2008). Comparative molecular field analysis (CoMFA). In J. Gasteiger (Ed.), Handbook of chemoinformatics – From data to knowledge. Weinheim, Germany: Wiley-VCH Verlag GmbH. doi:10.1002/9783527618279.ch44d
  • Kumar, A., Sahoo, S. K., Padhee, K., Kochar, P. P. S., Satapathy, A., & Pathak, N. (2011). Review on solubility enhancement techniques for hydrophobic drugs. Pharmacie Globale: International Journal of Comprehensive Pharmacy (IJCP), 3, 1–7.
  • Kumari, T., Issar, U., & Kakkar, R. (2014). Docking modes of BB-3497 into the PDF active site – A comparison of the pure MM and QM/MM based docking strategies. Current Computer Aided-Drug Design, 10(4), 315–326. doi:10.2174/157340991004150518145522
  • Leonard, J. T., & Roy, K. (2006). On selection of training and test sets for the development of predictive QSAR models. QSAR & Combinatorial Science, 25, 235–251. doi:10.1002/qsar.200510161
  • Li, Y., Wang, Y., & Zhang, F. (2010). Pharmacophore modeling and 3D-QSAR analysis of phosphoinositide 3-kinase p110α inhibitors. Journal of Molecular Modeling, 16(9), 1449–1460. doi:10.1007/s00894-010-0659-y
  • LigPrep. (2009). LigPrep, version 2.3. New York, NY: Schrödinger LLC.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. doi:10.1016/S0169-409X(96)00423-1
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26.
  • MacroModel. (2009). MacroModel, version 9.7. New York, NY: Schrödinger LLC.
  • Mishra, H., Parrill, A. L., & Williamson, J. S. (2002). Three-dimensional quantitative structure–activity relationship and comparative molecular field analysis of dipeptide hydroxamic acid Helicobacter pylori urease inhibitors. Antimicrobial Agents and Chemotherapy, 46(8), 2613–2618. doi:10.1128/AAC.46.8.2613-2618.2002
  • Mobley, H. L. T., & Hausinger, R. P. (1989). Microbial ureases: Significance, regulation, and molecular characterization. Microbiological Reviews, 53:85–108.
  • Mobley, H. L., Island, M. D., & Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiological Reviews, 59, 451–480.
  • Munakata, K.-I., Kobashi, K., Takebe, S., & Hase, J.-I. (1980). Therapy for urolithiasis by hydroxamic acids. III. Urease inhibitory potency and urinary excretion rate of N-acylglycinohydroxamic acids. Journal of Pharmacobio-Dynamics, 3(9), 451–456. doi:10.1248/bpb1978.3.451
  • Musiani, F., Arnofi, E., Casadio, R., & Ciurli, S. (2001). Structure-based computational study of the catalytic and inhibition mechanisms of urease. JBIC Journal of Biological Inorganic Chemistry, 6(3), 300–314. doi:10.1007/s007750000204
  • Nair, S. B., Teli, M. K., Pradeep, H., & Rajanikant, G. K. (2012). Computational identification of novel histone deacetylase inhibitors by docking based QSAR. Computers in Biology and Medicine, 42(6), 697–705. doi:10.1016/j.compbiomed.2012.04.001
  • Park, J.-B., Imamura, L., Kobashi, K., Itoh, H., Miyazaki, T., & Horisaki, T. (1995). Inhibitory effect of β-glucosyl-phenolic hydroxamic acids against urease in the presence of microfloral β-glucosidase. Biological & Pharmaceutical Bulletin, 18(2), 208–213. doi:10.1248/bpb.18.208
  • Pearson, M. A., Michel, L. O., Hausinger, R. P., & Karplus, P. A. (1997). Structures of Cys319 variants and acetohydroxamate-inhibited Klebsiella aerogenes urease. Biochemistry, 36(26), 8164–8172. doi:10.1021/bi970514j
  • Pervez, H., Chohan, Z. H., Ramzan, M., Nasim, F.-U.-H., & Khan, K. M. (2009). Synthesis and biological evaluation of some new N4-substituted isatin-3-thiosemicarbazones. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(2), 437–446. doi:10.1080/14756360802188420
  • PHASE. (2009). PHASE, version 3.0. New York, NY: Schrödinger LLC.
  • QikProp. (2009). QikProp, version 3.2. New York, NY: Schrödinger LLC.
  • Rauf, A., Shahzad, S., Bajda, M., Yar, M., Ahmed, F., Hussain, N., … Jończyk, J. (2015). Design and synthesis of new barbituric- and thiobarbituric acid derivatives as potent urease inhibitors: Structure activity relationship and molecular modeling studies. Bioorganic & Medicinal Chemistry, 23, 6049–6058. doi:10.1016/j.bmc.2015.05.038
  • Ray, S. (2012). QSAR modeling of antitmycobacterial activities of N-benzylsalicylamides and N-benzylsalicylthioamides derivatives against Mycobacterium kansasii CNCTC My (6509/96) using stepwise and PLS method. International Journal of ChemTech Research, 4, 41–47.
  • Sándor, M., Kiss, R., & Keserű, G. M. (2010). Virtual fragment docking by Glide: A validation study on 190 protein-fragment complexes. Journal of Chemical Information and Modeling, 50(6), 1165–1172. doi:10.1021/ci1000407
  • Seelig, A., Gottschlich, R., & Devant, R. M. (1994). A method to determine the ability of drugs to diffuse through the blood–brain barrier. Proceedings of the National Academy of Sciences, 91(1), 68–72. doi:10.1073/pnas.91.1.68
  • Serwar, M., Akhtar, T., Hameed, S., & Khan, K. M. (2009). Synthesis, urease inhibition and antimicrobial activities of some chiral 5-aryl-4-(1-phenylpropyl)-2H-1,2,4-triazole-3(4H)-thiones. Arkivoc, 2009, 210–221. doi:10.3998/ark.5550190.0010.720
  • Shah, U. A., Deokar, H. S., Kadam, S. S., & Kulkarni, V. M. (2010). Pharmacophore generation and atom-based 3DQSAR of novel 2-(4-methylsulfonylphenyl)pyrimidines as COX-2 inhibitors. Molecular Diversity, 14(3), 559–568. doi:10.1007/s11030-009-9183-3
  • Shi, W.-K., Deng, R.-C., Wang, P.-F., Yue, Q.-Q., Liu, Q., Ding, K.-L., … Zhu, H.-L. (2016). 3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: Synthesis, molecular docking and biological evaluation. Bioorganic & Medicinal Chemistry, 24, 4519–4527. doi:10.1016/j.bmc.2016.07.052
  • Smoot, D. T., Mobley, H. L., Chippendale, G. R., Lewison, J. F., & Resau, J. H. (1990). Helicobacter pylori urease activity is toxic to human gastric epithelial cells. Infection and Immunity, 58, 1992–1994.
  • Teli, M. K., & Rajanikant, G. K. (2012). Pharmacophore generation and atom-based 3D-QSAR of N-iso-propyl pyrrolebased derivatives as HMG-CoA reductase inhibitors. Organic and Medicinal Chemistry Letters, 2, 1–10. doi:10.1186/2191-2858-2-25
  • Telvekar, V. N., Kundaikar, H. S., Patel, K. N., & Chaudhari, H. K. (2008). 3-D QSAR and molecular docking studies on aryl benzofuran-2-yl ketoxime derivatives as Candida albicans N-myristoyl transferase inhibitors. QSAR & Combinatorial Science, 27(10), 1193–1203. doi:10.1002/qsar.200810017
  • Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 48(1), 159–205. doi:10.1016/j.csda.2004.03.005
  • Todd, M. J., & Hausinger, R. P. (1989). Competitive inhibitors of Klebsiella aerogenes urease. Mechanisms of interaction with the nickel active site. Journal of Biological Chemistry, 264, 15835–15842.
  • Todd, M. J., & Hausinger, R. P. (2000). Fluoride inhibition of Klebsiella aerogenes urease: Mechanistic implications of a pseudo-uncompetitive, slow-binding inhibitor. Biochemistry, 38, 5389–5396. doi:10.1021/bi992287m
  • Uddin, N., Siddiqui, B. S., Begum, S., Bhatti, H. A., Khan, A., Parveen, S., & Choudhary, M. I. (2011). Bioactive flavonoids from the leaves of Lawsonia alba (Henna). Phytochemistry Letters, 4(4), 454–458. doi:10.1016/j.phytol.2011.05.007
  • Uesato, S., Hashimoto, Y., Nishino, M., Nagaoka, Y., & Kuwajima, H. (2002). N-Substituted hydroxyureas as urease inhibitors. Chemical & Pharmaceutical Bulletin, 50(9), 1280–1282. doi:10.1248/cpb.50.1280
  • Upadhyay, L. S. B. (2012). Urease inhibitors: A review. Indian Journal of Biotechnology, 11, 381–388.
  • Vijayan, R. S. K., & Ghoshal, N. (2008). Structural basis for ligand recognition at the benzodiazepine binding site of GABAA α3 receptor, and pharmacophore-based virtual screening approach. Journal of Molecular Graphics and Modelling, 27(3), 286–298. doi:10.1016/j.jmgm.2008.05.003
  • Wang, S., Lee, M. H., Hausinger, R. P., Clark, P. A., Wilcox, D. E., & Scott, R. A. (1994). Structure of the dinuclear active site of urease. X-ray absorption spectroscopic study of native and 2-mercaptoethanol-inhibited bacterial and plant enzymes. Inorganic Chemistry, 33(8), 1589–1593. doi:10.1021/ic00086a006
  • Wang, X., Willén, R., & Wadström, T. (2000). Astaxanthin-rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice. Antimicrobial Agents and Chemotherapy, 44(9), 2452–2457. doi:10.1128/AAC.44.9.2452-2457.2000
  • Xiao, Z.-P., Peng, Z.-Y., Dong, J.-J., Deng, R.-C., Wang, X.-D., Ouyang, H., … Zhu, H.-L. (2013). Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. European Journal of Medicinal Chemistry, 68, 212–221. doi:10.1016/j.ejmech.2013.07.047
  • Xiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C., & Zhu, H.-L. (2007). Polyphenols based on isoflavones as inhibitors of Helicobacter pylori urease. Bioorganic & Medicinal Chemistry, 15(11), 3703–3710. doi:10.1016/j.bmc.2007.03.045
  • Ul-Haq, Z., & Wadood, A. (2009). Prediction of binding affinities for hydroxamic acid derivatives as urease inhibitors by molecular docking and 3D-QSAR studies. Letters in Drug Design & Discovery, 6, 93–100. doi:10.2174/157018009787582598
  • Ul-Haq, Z., Wadood, A., & Uddin, R. (2009). CoMFA and CoMSIA 3D-QSAR analysis on hydroxamic acid derivatives as urease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(1), 272–278. doi:10.1080/14756360802166665
  • Zhang, H-M., Wakisaka, N., Maeda, O., & Yamamoto, T. (1997). Vitamin C inhibits the growth of a bacterial risk factor for gastric carcinoma: Helicobacter pylori. Cancer, 80(10), 1897–1903. doi:10.1002/(SICI)1097-0142(19971115)80:10 < 1897::AID-CNCR4 > 3.0.CO;2-L

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.