149
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Elucidating the chemical and biochemical applications of Citrus sinensis-mediated silver nanocrystal

, , , , , & show all
Pages 4863-4874 | Received 03 Sep 2018, Accepted 06 Dec 2018, Published online: 16 Jan 2019

References

  • Anand, B. G., Thomas, C. N., Prakash, S., & Kumar, C. S. (2015). Biosynthesis of silver nano-particles by marine sediment fungi for a dose dependent cytotoxicity against HEp2 cell lines. Biocatalysis and Agricultural Biotechnology, 4(2), 150–157. doi:10.1016/j.bcab.2015.01.002
  • Anjum, S., Abbasi, B. H., & Shinwari, Z. K. (2016). Plant-mediated green synthesis of silver nanoparticles for biomedical applications: Challenges and opportunities. Pakistan Journal of Botany, 48, 1731–1760.
  • Banala, R. R., Nagati, V. B., & Karnati, P. R. (2015). Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi Journal of Biological Sciences, 22(5), 637–644. doi:10.1016/j.sjbs.2015.01.007
  • Becker, R. O. (1999). Silver ions in the treatment of local infections. Metal–Based Drugs, 6, 297–300.
  • Beg, M., Maji, A., Mandal, A. K., Das, S., Jha, P. K., & Hossain, M. (2018a). Spectroscopic investigation on interaction of biogenic, Croton bonplandianum leaves extract mediated potential bactericidal silver nanoparticles with human hemoglobin and human serum albumin. Journal of Biomolecular Structure and Dynamics, 36(3), 711–723. doi:10.1080/07391102.2017.1294505
  • Beg, M., Maji, A., Islam, M. M., & Hossain, M. (2018b). Elucidating the interaction of Spathodea campanulata leaf extracts mediated potential bactericidal gold nanoparticles with human serum albumin: spectroscopic analysis. Journal of Biomolecular Structure and Dynamics, 1, 1–14. doi:10.1080/07391102.2018.1518157
  • Bose, A., Keharia, H., & Deshpande, M. P. (2013). Eco-friendly phyto-synthesis of silver nanoparticlesusing Jatropha seedcake extract. Chinese Physics Letters, 30(12), 128103. doi:10.1088/0256-307X/30/12/128103
  • Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M. C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88(2), 412–419. doi:10.1093/toxsci/kfi256
  • Cao, J., Elliott, D., & Zhang, W. X. (2005). Perchlorate reduction by nanoscale iron particles. Journal of Nanoparticle Research, 7(4-5), 499–506. doi:10.1007/s11051-005-4412-x
  • Cedervall, T., Lynch, I., Lindman, S., Berggård, T., Thulin, E., Nilsson, H., … Linse, S. (2007). Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2050–2055. doi:10.1073/pnas.0608582104
  • Chan, W. C., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M., & Nie, S. (2002). Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology, 13(1), 40–46. doi:10.1016/S0958-1669(02)00282-3
  • Das, S., Islam, M. M., Jana, G. C., Patra, A., Jha, P. K., & Hossain, M. (2018). Molecular binding of toxic phenothiazinium derivatives, azures to bovine serum albumin: A comparative spectroscopic, calorimetric, and in silico study. Journal of Molecular Recognition, 30(7),e2609.
  • Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 3(1), 8. doi:10.1186/1477-3155-3-8
  • Edison, T. J. I., & Sethuraman, M. G. (2012). Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochemistry, 47(9), 1351–1357. doi:10.1016/j.procbio.2012.04.025
  • El-Shamy, H., El-Mehasseb, I., & El-Kemary, M. (2018). Photoinduced electron transfer from sodium 1-[1-hydroxynaphthylazo]-6-nitro-2-naphthol-4-sulfonate dye to ZnO nanoparticles. Journal of Molecular Structure, 1153, 53–57. doi:10.1016/j.molstruc.2017.10.001
  • Farhadi, K., Forough, M., Molaei, R., Hajizadeh, S., & Rafipour, A. (2012). Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors & Actuators, B: Chemical, 161, 880–885. doi:10.1016/j.snb.2011.11.052
  • Feng, J., & Lim, T. T. (2007). Iron-mediated reduction rates and pathways of halogenated methanes with nanoscale Pd/Fe: Analysis of linear free energy relationship. Chemosphere, 66(9), 1765–1774. doi:10.1016/j.chemosphere.2006.06.068
  • Gurunathan, S., Han, J. W., Kwon, D. N., & Kim, J. H. (2014). Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Research Letters, 9(1), 373. doi:10.1186/1556-276X-9-373
  • Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., … Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1), 328–335. doi:10.1016/j.colsurfb.2009.07.048
  • Jain, D., Daima, H. K., Kachhwaha, S., & Kothari, S. L. (2009). Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest Journal of Nanomaterials and Biostructures, 4, 557–563.
  • Jiang, H., Manolache, S., Wong, A. C. L., & Denes, F. S. (2004). Plasma‐enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 93(3), 1411–1422. doi:10.1002/app.20561
  • John, R., & Florence, S. (2009). Structural and optical properties of ZnS nanoparticles synthesized by solid state reaction method. Chalcogenide Letters, 6, 535–539.
  • Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta, 1751(2), 119–139. doi:10.1016/j.bbapap.2005.06.005
  • Kim, Y., Johnson, R. C., & Hupp, J. T. (2001). Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Letters, 1(4), 165–167. doi:10.1021/nl0100116
  • Kubista, M., Sjoeback, R., & Albinsson, B. (1993). Determination of equilibrium constants by chemometric analysis of spectroscopic data. Analytical Chemistry, 65(8), 994–998. doi:10.1021/ac00056a008
  • Kumar, V., & Yadav, S. K. (2009). Plant‐mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology & Biotechnology, 84, 151–157. doi:10.1002/jctb.2023
  • Lalitha, A., Subbaiya, R., & Ponmurugan, P. (2013). Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. International Journal of Current Microbiology and Applied Sciences, 2, 228–235.
  • Li, L., Fan, M., Brown, R. C., Van Leeuwen, J. (H. )., Wang, J., Wang, W., … Zhang, P. (2006). Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Critical Reviews in Environmental Science and Technology, 36(5), 405–431. doi:10.1080/10643380600620387
  • Lin, C. Y., Yu, C. J., Lin, Y. H., & Tseng, W. L. (2010). Colorimetric sensing of silver (I) and mercury (II) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Analytical Chemistry, 82(16), 6830–6837. doi:10.1021/ac1007909
  • Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735–758. doi:10.1021/cr00035a013
  • Liu, Y. Q., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39, 1338–1345. doi:10.1021/es049195r
  • Mie, R., Samsudin, M. W., & Din, L. B. (2013). A review on biosynthesis of nanoparticles using plant extract: An emerging green nanotechnology. Advanced Materials Research, 667, 251–254. doi:10.4028/www.scientific.net/AMR.667.251
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. doi:10.1016/j.biotechadv.2013.01.003
  • Moores, A., & Goettmann, F. (2006). The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New Journal of Chemistry, 30(8), 1121–1132. doi:10.1039/b604038c
  • Mowry, S., & Ogren, P. J. (1999). Kinetics of methylene blue reduction by ascorbic acid. Journal of Chemical Education, 76(7), 970. doi:10.1021/ed076p970
  • Nair, L. S., & Laurencin, C. T. (2007). Laurencin, biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8-9), 762–798. doi:10.1016/j.progpolymsci.2007.05.017
  • Navarro, J. R., & Werts, M. H. (2013). Resonant light scattering spectroscopy of gold, silver and gold–silver alloy nanoparticles and optical detection in microfluidic channels. The Analyst, 138(2), 583–592. doi:10.1039/C2AN36135C
  • Noubactep, C., Meinrath, G., Dietrich, P., Sauter, M., & Merkel, B. J. (2005). Testing the suitability of zerovalent iron materials for reactive walls. Environmental Chemistry, 2(1), 71–76. doi:10.1071/EN04014
  • Nowicka-Jankowska T. (1971). Some properties of isosbestic points. Journal of Inorganic and Nuclear Chemistry, 33, 2043–2050.
  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O'hara, S., … Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 39, 1309–1318. doi:10.1021/es0490018
  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1-3), 70–80.
  • Roco, M. C., Williams, R. S., & Alivasatos, P. (1999). Nanotechnology research directions: IWGN Workshop Report. Norwell, MA: Kluwer Academic Publishers.
  • Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K., Han, M. S., & Mirkin, C. A. (2006). Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science (New York, N.Y.), 312(5776), 1027–1030.
  • Sathishkumar, G., Logeshwaran, V., Sarathbabu, S., Jha, P. K., Jeyaraj, M., Rajkuberan, C., … Sivaramakrishnan, S. (2018). Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artificial Cells, Nanomedicine and Biotechnology, 46(3), 589–598. doi:10.1080/21691401.2017.1332635
  • Sathya, A., & Ambikapathy, V. (2012). Studies on the phytochemistry, antibacterial activity and green synthesis of nanoparticles using Cassia tora L. against amphicillin resistant bacteria. Asian Journal of Plant Science & Research, 2, 486–489.
  • Shchukin, D. G., Schattka, J. H., Antonietti, M., & Caruso, R. A. (2003). Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template. The Journal of Physical Chemistry B, 107,952–957. doi:10.1021/jp026929i
  • Service, R. F. (1998). Superstrong nanotubes show they are smart, too. Science, 281(5379), 940–942. doi:10.1126/science.281.5379.940
  • Singh, R. P., & Ramarao, P. (2012). Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicology Letters, 213(2), 249–259. doi:10.1016/j.toxlet.2012.07.009
  • Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13(7), 2981–2988. doi:10.1007/s11051-010-0193-y
  • Soto-Robles, C. A., Nava, O. J., Vilchis-Nestor, A. R., Castro-Beltrán, A., Gómez-Gutiérrez, C. M., Lugo-Medina, E., … Luque, P. A. (2018). Biosynthesized zinc oxide using Lycopersicon esculentum peel extract for methylene blue degradation. Journal of Materials Science: Materials in Electronics, 29, 3722–3729. doi:10.1007/s10854-017-8305-4
  • Sun, Y. P., Li, X. Q., Cao, J., Zhang, W. X., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1-3), 47–56.
  • Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., … Colbert, D. T. (1996). Crystalline ropes of metallic carbon nanotubes. Science (New York, N.Y.), 273(5274), 483–487.
  • Vámos‐Vigyázó, L., & Haard, N. F. (1981). Polyphenol oxidases and peroxidases in fruits and vegetables. Critical Reviews in Food Science & Nutrition, 15, 49–127. doi:10.1080/10408398109527312
  • Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31, 2154–2156. doi:10.1021/es970039c
  • Wani, I. A., Ganguly, A., Ahmed, J., & Ahmad, T. (2011). Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies. Materials Letters, 65(3), 520–522. doi:10.1016/j.matlet.2010.11.003
  • Xie, H., Tkachenko, A. G., Glomm, W. R., Ryan, J. A., Brennaman, M. K., Papanikolas, J. M., … Feldheim, D. L. (2003). Critical flocculation concentrations, binding isotherms, and ligand exchange properties of peptide-modified gold nanoparticles studied by UV − visible, fluorescence, and time-correlated single photon counting spectroscopies. Analytical Chemistry, 75(21), 5797–5805. doi:10.1021/ac034578d
  • Zak, A. K., Majid, W. A., Abrishami, M. E., & Yousefi, R. (2011). X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Science, 13, 251–256. doi:10.1016/j.solidstatesciences.2010.11.024
  • Zhan, B. Z., White, M. A., Sham, T. K., Pincock, J. A., Doucet, R. J., Rao, K. R., … Cameron, T. S. (2003). Zeolite-confined nano-RuO2: A green, selective, and efficient catalyst for aerobic alcohol oxidation. Journal of the American Chemical Society, 125(8), 2195–2199. doi:10.1021/ja0282691
  • Zhang, H., Penn, R. L., Hamers, R. J., & Banfield, J. F. (1999). Enhanced adsorption of molecules on surfaces of nanocrystalline particles. The Journal of Physical Chemistry B, 103(22), 4656–4662. doi:10.1021/jp984574q

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.