393
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Comparative study of stability and transport of molecules through cyclic peptide nanotube and aquaporin: a molecular dynamics simulation approach

&
Pages 186-199 | Received 02 Oct 2018, Accepted 09 Jan 2019, Published online: 10 Feb 2019

References

  • Agre, P. (2006). The aquaporin water channels. Proceedings of the American Thoracic Society, 3(1), 5–13.
  • Asthagiri, D., & Bashford, D. (2002). Continuum and atomistic modeling of ion partitioning into a peptide nanotube. Biophysical Journal, 82(3), 1176–1189.
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098. doi:10.1103/PhysRevA.38.3098
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. doi:10.1063/1.464913
  • Bucher, D., Guidoni, L., Carloni, P., & Rothlisberger, U. (2010). Coordination numbers of K + and Na + ions inside the selectivity filter of the KcsA potassium channel: Insights from first principles molecular dynamics. Biophysical Journal, 98(10), L47–L49. doi:10.1016/j.bpj.2010.01.064
  • Choi, K.-M., Kwon, C.-H., Kim, H.-L., & Hwang, H.-S. (2012). Potential of mean force calculations for ion selectivity in a cyclic peptide nanotube. Bulletin of the Korean Chemical Society, 33(3), 911–916. doi:10.5012/bkcs.2012.33.3.911
  • Corry, B., & Thomas, M. (2012a). Ion permeation and selectivity in a voltage gated sodium channel. Biophysical Journal, 102(3), 334a. doi:10.1016/j.bpj.2011.11.1828
  • Corry, B., & Thomas, M. (2012b). Mechanism of ion permeation and selectivity in a voltage gated sodium channel. Journal of the American Chemical Society, 134(3), 1840–1846. doi:10.1021/ja210020h
  • Danial, M., Perrier, S., & Jolliffe, K. A. (2015). Effect of the amino acid composition of cyclic peptides on their self-assembly in lipid bilayers. Organic & Biomolecular Chemistry, 13(8), 2464–2473. doi:10.1039/C4OB02041C
  • Egwolf, B., & Roux, B. (2010). Ion selectivity of the KcsA channel: A perspective from multi-ion free energy landscapes. Journal of Molecular Biology, 401(5), 831–842.
  • Engels, M., Bashford, D., & Ghadiri, M. R. (1995). Structure and dynamics of self-assembling peptide nanotubes and the channel-mediated water organization and self-diffusion. A molecular dynamics study. Journal of the American Chemical Society, 117(36), 9151–9158. doi:10.1021/ja00141a005
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. doi:10.1063/1.470117
  • Finkelstein, A. (1987). Water movement through lipid bilayers, pores, and plasma membranes: Theory and reality. New York, NY: Wiley.
  • Furini, S., & Domene, C. (2012). On conduction in a bacterial sodium channel. PLoS Computational Biology, 8(4), e1002476.
  • Ghadiri, M. R., Granja, J. R., & Buehler, L. K. (1994). Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature, 369(6478), 301. doi:10.1038/369301a0
  • Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E., & Khazanovich, N. (1993). Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature, 366(6453), 324. doi:10.1038/366324a0
  • Hayashi, M., Sasaki, S., Tsuganezawa, H., Monkawa, T., Kitajima, W., Konishi, K., … Saruta, T. (1994). Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. The Journal of Clinical Investigation, 94(5), 1778–1783.
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.3.CO;2-L
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. doi:10.1021/ct700301q
  • Hub, J. S., De Groot, B. L., & Van Der Spoel, D. (2010). g_wham, A free weighted histogram analysis implementation including robust error and autocorrelation estimates. Journal of Chemical Theory and Computation, 6(12), 3713–3720. doi:10.1021/ct100494z
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.
  • Hwang, H., Schatz, G. C., & Ratner, M. A. (2006). Steered molecular dynamics studies of the potential of mean force of a Na + or K + ion in a cyclic peptide nanotube. The Journal of Physical Chemistry B, 110(51), 26448–26460. doi:10.1021/jp0657888
  • Izadyar, M., Khavani, M., & Housaindokht, M. R. (2015). A combined molecular dynamic and quantum mechanic study of the solvent and guest molecule effect on the stability and length of heterocyclic peptide nanotubes. Physical Chemistry Chemical Physics, 17(17), 11382–11391. doi:10.1039/C5CP00973A
  • Jensen, M. Ø., & Mouritsen, O. G. (2006). Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF. Biophysical Journal, 90(7), 2270–2284.
  • Jensen, M. Ø., Park, S., Tajkhorshid, E., & Schulten, K. (2002). Energetics of glycerol conduction through aquaglyceroporin GlpF. Proceedings of the National Academy of Sciences, 99(10), 6731–6736. doi:10.1073/pnas.102649299
  • Jensen, M. Ø., Tajkhorshid, E., & Schulten, K. (2003). Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophysical Journal, 85(5), 2884–2899. doi:10.1016/S0006-3495(03)74711-0
  • Jishi, R. A., Flores, R. M., Valderrama, M., Lou, L., & Bragin, J. (1998). Equilibrium geometry and properties of cyclo [(Gly-D-Ala) 4] and ${$cyclo [(Gly-D-Ala) 4]$}$2 from density functional theory. The Journal of Physical Chemistry A, 102(48), 9858–9862. doi:10.1021/jp981997j
  • Jo, S., Lim, J. B., Klauda, J. B., & Im, W. (2009). CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. Biophysical Journal, 97(1), 50–58. doi:10.1016/j.bpj.2009.04.013
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. doi:10.1063/1.445869
  • Ke, S., Zangerl, E.-M., & Stary-Weinzinger, A. (2013). Distinct interactions of Na + and Ca2+ ions with the selectivity filter of the bacterial sodium channel NaVAb. Biochemical and Biophysical Research Communications, 430(4), 1272–1276. doi:10.1016/j.bbrc.2012.12.055
  • Kim, H. S., Hartgerink, J. D., & Ghadiri, M. R. (1998). Oriented self-assembly of cyclic peptide nanotubes in lipid membranes. Journal of the American Chemical Society, 120(18), 4417–4424. doi:10.1021/ja9735315
  • Krieger, E., & Vriend, G. (2014). YASARA view – molecular graphics for all devices – from smartphones to workstations. Bioinformatics (Oxford, England), 30(20), 2981–2982.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785. doi:10.1103/PhysRevB.37.785
  • Lewis, J. P., Pawley, N. H., & Sankey, O. F. (1997). Theoretical investigation of the cyclic peptide system cyclo [(d-Ala–Glu-d-Ala–Gln) m = 1–4]. The Journal of Physical Chemistry B, 101(49), 10576–10583. doi:10.1021/jp9722317
  • Liu, J., Fan, J., Cen, M., Song, X., Liu, D., Zhou, W., … Yan, J. (2012). Dependences of water permeation through cyclic octa-peptide nanotubes on channel length and membrane thickness. Journal of Chemical Information and Modeling, 52(8), 2132–2138. doi:10.1021/ci300185c
  • Liu, J., Fan, J., Tang, M., Cen, M., Yan, J., Liu, Z., & Zhou, W. (2010). Water diffusion behaviors and transportation properties in transmembrane cyclic hexa-, octa-and decapeptide nanotubes. The Journal of Physical Chemistry B, 114(38), 12183–12192. doi:10.1021/jp1039207
  • Maroli, N., & Kolandaivel, P. (2018). Structure, stability and water permeation of ([D-Leu-L-Lys-(D-Gln-L-Ala) 3]) cyclic peptide nanotube: A molecular dynamics study. Molecular Simulation, 44(3), 225–235. doi:10.1080/08927022.2017.1366653
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. doi:10.1063/1.467468
  • Nielsen, S., Marples, D., Birn, H., Mohtashami, M., Dalby, N. O., Trimble, M., & Knepper, M. (1995). Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. Journal of Clinical Investigation, 96(4), 1834–1844. doi:10.1172/JCI118229
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084
  • Roux, B., Bernèche, S., Egwolf, B., Lev, B., Noskov, S. Y., Rowley, C. N., & Yu, H. (2011). Ion selectivity in channels and transporters. The Journal of General Physiology, 137(5), 415–426.
  • Sanchez-Quesada, J., Ghadiri, M. R., Bayley, H., & Braha, O. (2000). Cyclic peptides as molecular adapters for a pore-forming protein. Journal of the American Chemical Society, 122(48), 11757–11766. doi:10.1021/ja002436k
  • Sánchez-Quesada, J., Isler, M. P., & Ghadiri, M. R. (2002). Modulating ion channel properties of transmembrane peptide nanotubes through heteromeric supramolecular assemblies. Journal of the American Chemical Society, 124(34), 10004–10005.
  • Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: an online force field. Nucleic Acids Research, 33(Web Server issue), W382–W388.
  • Song, Y., Lee, J. H., Hwang, H., Schatz, G. C., & Hwang, H. (2016). Energetic and dynamic analysis of transport of Na + and K + through a cyclic peptide nanotube in water and in lipid bilayers. The Journal of Physical Chemistry B, 120(46), 11912–11922. doi:10.1021/acs.jpcb.6b09638
  • Sui, H., Han, B.-G., Lee, J. K., Walian, P., & Jap, B. K. (2001). Structural basis of water-specific transport through the AQP1 water channel. Nature, 414(6866), 872–878. doi:10.1038/414872a
  • Tajkhorshid, E., Zhu, F., & Schulten, K. (2005). Kinetic theory and simulation of single-channel water transport. In S. Yip (Ed.), Handbook of materials modeling (pp. 1797–1822) Dordrecht: Springer.
  • Tarek, M., Maigret, B., & Chipot, C. (2003). Molecular dynamics investigation of an oriented cyclic peptide nanotube in DMPC bilayers. Biophysical Journal, 85(4), 2287–2298. doi:10.1016/S0006-3495(03)74653-0
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., others. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. doi:10.1002/jcc.21367
  • Verkman, A. S. (2012). Aquaporins in clinical medicine. Annual Review of Medicine, 63, 303–316.
  • Vijayaraj, R., Van Damme, S., Bultinck, P., & Subramanian, V. (2013). Theoretical studies on the transport mechanism of 5-fluorouracil through cyclic peptide based nanotubes. Physical Chemistry Chemical Physics, 15(4), 1260–1270. doi:10.1039/C2CP42038D
  • Yan, X., Fan, J., Yu, Y., Xu, J., & Zhang, M. (2015). Transport behavior of a single Ca2+, K+, and Na + in a water-filled transmembrane cyclic peptide nanotube. Journal of Chemical Information and Modeling, 55(5), 998–1011. doi:10.1021/acs.jcim.5b00025
  • Yu, W., He, X., Vanommeslaeghe, K., & MacKerell Jr, A. D.. (2012). Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 33(31), 2451–2468.
  • Zeidel, M. L., Ambudkar, S. V., Smith, B. L., & Agre, P. (1992). Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry, 31(33), 7436–7440. doi:10.1021/bi00148a002
  • Zhu, F., Tajkhorshid, E., & Schulten, K. (2001). Molecular dynamics study of aquaporin-1 water channel in a lipid bilayer. FEBS Letters, 504(3), 212–218.
  • Zhu, F., Tajkhorshid, E., & Schulten, K. (2002). Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophysical Journal, 83(1), 154–160. doi:10.1016/S0006-3495(02)75157-6
  • Zhu, F., Tajkhorshid, E., & Schulten, K. (2004). Collective diffusion model for water permeation through microscopic channels. Physical Review Letters, 93(22), 224501.
  • Zhu, F., Tajkhorshid, E., & Schulten, K. (2004). Theory and simulation of water permeation in aquaporin-1. Biophysical Journal, 86(1 Pt 1), 50–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.