642
Views
29
CrossRef citations to date
0
Altmetric
Research Articles

Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations

, , &
Pages 317-339 | Received 13 Nov 2018, Accepted 14 Jan 2019, Published online: 22 Feb 2019

References

  • Anusuya, S., & Gromiha, M. M. (2017). Quercetin derivatives as non-nucleoside inhibitors for dengue polymerase: Molecular docking, molecular dynamics simulation, and binding free energy calculation. Journal of Biomolecular Structure and Dynamics, 35(13), 2895–2909. doi: 10.1080/07391102.2016.1234416
  • Adamo, C., & Barone, V. (1998). Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. Chinese Journal of Chemistry, 23(2), 576–580. doi:10.1063/1.475428
  • Alkorta, I., Rozas, I., & Elguero, J. (1998). Non-conventional hydrogen bonds. Chemical Society Reviews, 27(2), 163–170. doi: 10.1039/a827163z
  • Autexier, C., & Lue, N. F. (2006). The structure and function of telomerase reverse transcriptase. Annual Review of Biochemistry, 75(1), 493–517. doi: 10.1146/annurev.biochem.75.103004.142412
  • Azarhazin, E., Izadyar, M., & Housaindokht, M. R. (2018). Molecular dynamic simulation and DFT study on the drug–DNA interaction; Crocetin as an anti-cancer and DNA nanostructure model. Journal of Biomolecular Structure and Dynamics, 36(4), 1063–1074. doi: 10.1080/07391102.2017.1310060
  • B, F. R., Prasana, J. C., Muthu, S., & Abraham, C. S. (2019). Molecular docking studies, charge transfer excitation and wave function analyses (ESP, ELF, LOL) on valacyclovir: A potential antiviral drug. Computational Biology and Chemistry, 78, 9–17. doi: 10.1016/j.compbiolchem.2018.11.014
  • Bader, R. F. W. (1991). A quantum theory of molecular structure and its applications. Chemical Reviews, 91(5), 893–928. doi: 10.1021/cr00005a013
  • Bader, R. F. W., Slee, T. S., Cremer, D., & Kraka, E. (1983). Description of conjugation and hyperconjugation in terms of electron distributions. Journal of the American Chemical Society, 105(15), 5061–5068. doi: 10.1021/ja00353a035
  • Baryshnikov, G. V., Minaev, B. F., Minaeva, V. A., Baryshnikova, A. T., & Pittelkow, M. (2012). DFT and QTAIM study of the tetra-tert-butyltetraoxa[8]circulene regioisomers structure. Journal of Molecular Structure, 1026, 127–132. doi: 10.1016/j.molstruc.2012.05.065
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100. doi: 10.1103/PhysRevA.38.3098
  • Berg, L., Mishra, B. K., Andersson, C. D., Ekström, F., & Linusson, A. (2016). The nature of activated non-classical hydrogen bonds: A case study on acetylcholinesterase-ligand complexes. Chemistry – A European Journal, 22(8), 2672–2681. doi: 10.1002/chem.201503973
  • Blackburn, E. H. (1994). Telomeres : No end in sight minireview. Cell, 77(5), 621–623. doi: 10.1016/0092-8674(94)90046-9
  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecularinteractions by the differences of separatetotal energies. Some procedures with reduced errors. Molecular Physics, 19, 553–566. doi: 10.1080/00268977000101561
  • Bryan, T. M., & Cech, T. R. (1999). Telomerase and the maintenance of chromosome ends. Current Opinion on Cell Biology, 11, 318–324. doi: 10.1016/S0955-0674(99)80043-X
  • Chesnut, D. B. (2003). Atoms-in-molecules and electron localization function study of the phosphoryl bond. The Journal of Physical Chemistry A, 107(21), 4307–4313. doi: 10.1021/jp022292r
  • Clark, G. R., Pytel, P. D., Squire, C. J., & Neidle, S. (2003). Structure of the first parallel DNA quadruplex-drug complex. Journal of the American Chemical Society, 125(14), 4066–4067. doi: 10.1021/ja0297988
  • Cornard, J. P., Dangleterre, L., & Lapouge, C. (2005). Computational and characterization of the molecular and electronic structure of the Pb(II)-quercetin complex. The Journal of Physical Chemistry A, 109(44), 10044. doi: 10.1021/jp053506i
  • Dajas, F. (2012). Life or death: Neuroprotective and anticancer effects of quercetin. Journal of Ethnopharmacology, 143(2), 383–396. doi: 10.1016/j.jep.2012.07.005
  • Das, A., Majumder, D., & Saha, C. (2017). Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage. Journal of Photochemistry and Photobiology B: Biology, 170, 256–262. doi: 10.1016/j.jphotobiol.2017.04.019
  • Deepa, P., Kolandaivel, P., & Senthilkumar, K. (2011). Structural properties and the effect of 2,6-diaminoanthraquinone on G-tetrad, non-G-tetrads, and mixed tetrads – A density functional theory study. International Journal of Quantum Chemistry, 111(12), 3239–3250. doi: 10.1002/qua.22720
  • Dehghan, G., Dolatabadi, J. E. N., Jouyban, A., Zeynali, K. A., Ahmadi, S. M., & Kashanian, S. (2011). Spectroscopic studies on the interaction of quercetin–terbium(III) complex with calf thymus DNA. DNA and Cell Biology, 30(3), 195–201. doi: 10.1089/dna.2010.1063
  • Dubey, K. D., & Ojha, R. P. (2011). Binding free energy calculation with QM/MM hybrid methods for Abl-Kinase inhibitor. Journal of Biological Physics, 37(1), 69–78. doi: 10.1007/s10867-010-9199-z
  • Ducrest, A. L., Szutorisz, H., Lingner, J., & Nabholz, M. (2002). Regulation of the human telomerase reverse transcriptase gene. Oncogene, 21(4), 541–552. doi: 10.1038/sj.onc.1205081
  • Eizaguirre, A., Yáñez, M., & Eriksson, L. A. (2012). Stability and iron coordination in DNA adducts of Anthracycline based anti-cancer drugs. Physical Chemistry Chemical Physics, 14(36), 12505–12514. doi: 10.1039/c2cp40931c
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Petersson, G. A. (2009). Gaussian 09. Wallingford, CT: Gaussian, Inc.
  • Fuentealba, P. (2015). Understanding and using the Electron Localization Function (ELF), (January 2007).
  • Ganesan, K., & Xu, B. (2018). Telomerase inhibitors from natural products and their anticancer potential. International Journal of Molecular Sciences, 19(1), 13. doi:10.3390/ijms19010013
  • Gu, J., & Leszczynski, J. (2000). Structures and properties of the planar G·C·G·C tetrads: Ab initio HF and DFT Studies. The Journal of Physical Chemistry A, 104(31), 7353–7358. doi: 10.1021/jp000741m
  • Gu, J., & Leszczynski, J. (2002). Origin of Na+/K + selectivity of the guanine tetraplexes in water: The theoretical rationale. The Journal of Physical Chemistry A, 106(3), 529–532. doi: 10.1021/jp012739g
  • Gu, J., Leszczynski, J., & Bansal, M. (1999). A new insight into the structure and stability of Hoogsteen hydrogen-bonded G-tetrad: An ab initio SCF study. Chemical Physics Letters, 311(3–4), 209–214. doi: 10.1016/S0009-2614(99)00821-0
  • Hajian, R., & Guan Huat, T. (2013). Spectrophotometric studies on the thermodynamics of the DS-DNA interaction with irinotecan for a better understanding of anticancer drug–DNA interactions. Journal of Spectroscopy, 1–8. doi: 10.1155/2013/380352
  • Hamam, K. J., & Alomari, M. I. (2017). A study of the optical band gap of zinc phthalocyanine nanoparticles using UV–Vis spectroscopy and DFT function. Applied Nanoscience, 7(5), 261–268. doi: 10.1007/s13204-017-0568-9
  • Harigai, M., Kataoka, M., & Imamoto, Y. (2006). A single CH/π weak hydrogen bond governs stability and the photocycle of the photoactive yellow protein. Journal of the American Chemical Society, 128(33), 10646–10647. doi: 10.1021/ja062125v
  • Havsteen, B. H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacology & Therapeutics, 96 (2-3), 67–202. doi: 10.1016/S0163-7258(02)00298-X
  • Heald, R. A., Modi, C., Cookson, J. C., Hutchinson, I., Laughton, C. A., Gowan, S. M., … Stevens, M. F. G. (2002). Activity of methylated pentacyclic acridinium salts. Journal of Medicinal Chemistry 45, 590–597. doi: 10.1021/jm011015q
  • Hirpara, K. V., Aggarwal, P., Mukherjee, A. J., Joshi, N., & Burman, A. C. (2009). Quercetin and its derivatives: Synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anti-Cancer Agents in Medicinal Chemistry, 9(2), 138–161. doi: 10.2174/187152009787313855
  • Husain, S., Cillard, J., & Cillard, P. (1987). Hydroxyl radical scavenging of flavonoids. Phytochemistry, 26(9), 2489–2491. doi: 10.1016/S0031-9422(00)83860-1
  • Jacobsen, H. (2008). Localized-orbital locator (LOL) profiles of chemical bonding. Canadian Journal of Chemistry, 86(7), 695–702. doi: 10.1139/v08-052
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. doi: 10.1002/jcc.10128
  • Jarikote, D. V., Li, W., Jiang, T., Eriksson, L. A., & Murphy, P. V. (2011). Towards echinomycin mimetics by grafting quinoxaline residues on glycophane scaffolds. Bioorganic and Medicinal Chemistry, 19(2), 826–835. doi: 10.1016/j.bmc.2010.12.009
  • Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., Diamantoglou, S., & Tajmir-Riahi, H. A. (2005). Dna interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol, and delphinidin. Journal of Biomolecular Structure and Dynamics, 22(6), 719–724. doi: 10.1080/07391102.2005.10507038
  • Kannan, S., & Kolandaivel, P. (2017). Antiviral potential of natural compounds against influenza virus hemagglutinin. Computational Biology and Chemistry, 71, 207–218. doi: 10.1016/j.compbiolchem.2017.11.001
  • Kavitha, S., Deepa, P., Karthika, M., & Kanakaraju, R. (2018). Hybrid DFT study on non-covalent interactions and their influence on pKa’s of magnesium-carboxylate complexes. Journal of Molecular Graphics and Modelling, 85, 13–24. doi: 10.1016/j.jmgm.2018.07.004
  • Kerwin, S. M., Sun, D., Kern, J. T., Rangan, A., & Thomas, P. W. (2001). G-quadruplex DNA binding by a series of carbocyanine dyes. Bioorganic and Medicinal Chemistry Letters, 11(18), 2411–2414. doi: 10.1016/S0960-894X(01)00490-5
  • Kettani, A., Bouaziz, S., Gorin, A., Zhao, H., Jones, R. A., & Patel, D. J. (1998). Solution structure of a Na cation stabilized DNA quadruplex containing G·G·G·G· and G·C·G·C· tetrads formed by G-G-G-C repeats observed in adeno-associated viral DNA. Journal of Molecular Biology, 282(3), 619–636. doi: 10.1006/jmbi.1998.2030
  • Khan, A. M., Shawon, J., & Halim, M. A. (2017). Multiple receptor conformers based molecular docking study of fluorine enhanced ethionamide with mycobacterium enoyl ACP reductase (InhA). Journal of Molecular Graphics and Modelling, 77, 386–398. doi: 10.1016/j.jmgm.2017.09.010
  • Khandelwal, A., Lukacova, V., Comez, D., Kroll, D. M., Raha, S., Balaz, S. (2005). A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. Journal of Medicinal Chemistry, 48(17), 5437–5447. doi: 10.1021/jm049050v
  • Krieger, E., Darden, T., Nabuurs, S. B., Finkelstein, A., & Vriend, G. (2004). Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins: Structure, Function, and Bioinformatics, 57(4), 678–683. doi: 10.1002/prot.20251
  • Krishnamachari, V., Levine, L. H., & Paré, P. W. (2002). Flavonoid oxidation by the radical generator AIBN: A unified mechanism for quercetin radical scavenging. Journal of Agricultural and Food Chemistry, 50(15), 4357–4363. doi: 10.1021/jf020045e
  • Lin, Y., Shi, R., Wang, X., & Shen, H.-M. (2008). Luteolin, a flavonoid with potential for cancer prevention and therapy. Current Cancer Drug Targets, 8(7), 634–646. doi: 10.2174/156800908786241050
  • Louit, G., Hocquet, A., Ghomi, M., Meyer, M., & Sühnel, J. (2003). Guanine tetrads interacting with metal ions. An AIM topological analysis of the electronic density. PhysChemComm, 6(1), 1–5. doi: 10.1039/b210911e
  • Madunić, J., Madunić, I. V., Gajski, G., Popić, J., & Garaj-Vrhovac, V. (2018). Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Letters, 413, 11–22. doi: 10.1016/j.canlet.2017.10.041
  • Meyer, M., Schneider, C., Brandl, M., & Sühnel, J. (2001). Cyclic adenine-, cytosine-, thymine-, and mixed guanine – Cytosine-base tetrads in nucleic acids viewed from a quantum-chemical and force field perspective. The Journal of Physical Chemistry A, 105(51), 11560–11573. doi: 10.1021/jp012546t
  • Morosanu, A. C., Benchea, A. C., Babusca, D., Dimitriu, D. G., & Dorohoi, D. O. (2017). Quantum-mechanical and solvatochromic characterization of quercetin. Analytical Letters, 50(17), 2725–2739. doi: 10.1080/00032719.2017.1291657
  • O’Brien, E. J. (1967). Crystal structures of two complexes containing guanine and cytosine derivatives. Acta Crystallographica, 23(1), 92–106. doi: 10.1107/S0365110X67002191
  • Otero-De-La-Roza, A., & Luaña, V. (2010). Topological characterization of the electron density Laplacian in crystals: The case of the group IV elements. Journal of Chemical Theory and Computation, 6(12), 3761–3779. doi: 10.1021/ct100269e
  • Petraccone, L., Erra, E., Esposito, V., Randazzo, A., Mayol, L., Nasti, L., … Giancola, C. (2004). Stability and structure of telomeric DNA sequences forming quadruplexes containing four G-tetrads with different topological arrangements. Biochemistry, 43(16), 4877–4884. doi: 10.1021/bi0300985
  • Phillips, K., Dauter, Z., Murchie, A. I. H., Lilley, D. M. J., & Luisi, B. (1997). The crystal structure of a parallel-stranded guanine tetraplex at 0.95 Å resolution. Journal of Molecular Biology, 273(1), 171–182. doi: 10.1006/jmbi.1997.1292
  • Radhika, R., Shankar, R., Vijayakumar, S., & Kolandaivel, P. (2018). Role of 6-mercaptopurine in the potential therapeutic targets DNA base pairs and G-quadruplex DNA: Insights from quantum chemical and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 36(6), 1369–1401. doi: 10.1080/07391102.2017.1323013
  • Rafique, B., Khalid, A. M., Akhtar, K., & Jabbar, A. (2013). Interaction of anticancer drug methotrexate with DNA analyzed by electrochemical and spectroscopic methods. Biosensors and Bioelectronics, 44, 21–26. doi: 10.1016/j.bios.2012.12.028
  • Reed, A. E., Curtiss, L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor—Acceptor viewpoint. Chemical Reviews, 88(6), 899–926. doi: 10.1021/cr00088a005
  • Ren, W., Qiao, Z., Wang, H., Zhu, L., & Zhang, L. (2003). Flavonoids: Promising anticancer agents. Medicinal Research Reviews, 23(4), 519–534. doi: 10.1002/med.10033
  • Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933–956. doi: 10.1016/0891-5849(95)02227-9
  • Robards, K., Prenzler, P. D., Tucker, G., Swatsitang, P., & Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66(4), 401–436. doi: 10.1016/S0308-8146(99)00093-X
  • Saranya, V., Shankar, R., & Vijayakumar, S. (2018). Structural exploration of Viral matrix protein 40 interaction with the transition metal ions (Ag + and Cu2+). Journal of Biomolecular Structure and Dynamics, 0(0), 000. doi: 10.1080/07391102.2018.1498803
  • Seela, F., & Kröschel, R. (2001). Quadruplex and pentaplex self-assemblies of oligonucleotides containing short runs of 8-aza-7-deaza-2′-deoxyisoguanosine or 2′-deoxyisoguanosine. Bioconjugate Chemistry, 12(6), 1043–1050. doi: 10.1021/bc010064e
  • Shankar, R. (2014). Theoretical studies on interaction of anticancer drugs (dacarbazine, procarbazine and triethylenemelamine) with normal (AT and GC) and mismatch (GG, CC, AA and TT) base pairs. Molecular Simulation, 41 (8), 633–652. doi:10.1080/07391102.2018.1498803
  • Shankar, R., Kolandaivel, P., & Senthil Kumar, L. (2012). Coordination and binding properties of zwitterionic glutathione with transition metal cations. Inorganica Chimica Acta, 387, 125–136. doi: 10.1016/j.ica.2012.01.004
  • Shewach, D. S., & Kuchta, R. D. (2009). Introduction to cancer chemotherapeutics. Chemical Reviews, 109(7), 2859–2861. doi: 10.1021/cr900208x
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 67(1), 7–30. doi: 10.3322/caac.21387
  • Simmerling, C. (2015). ff 14SB: Improving the accuracy of protein side chain and backbone parameters from ff 99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713 doi:10.1021/acs.jctc.5b00255
  • Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug–DNA interactions and their study by UV–visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology, 124, 1–19. doi: 10.1016/j.jphotobiol.2013.03.013
  • Subramanyam, S., Jones, W. T., Spies, M., & Ashley Spies, M. (2013). Contributions of the RAD51 N-terminal domain to BRCA2-RAD51 interaction. Nucleic Acids Research, 41(19), 9020–9032. doi: 10.1093/nar/gkt691
  • Tawani, A., & Kumar, A. (2015). Structural insight into the interaction of flavonoids with human telomeric sequence. Scientific Reports, 5, 1–13. doi:10.1038/srep17574
  • Tawani, A., Mishra, S. K., & Kumar, A. (2017). Structural insight for the recognition of G-quadruplex structure at human c-myc promoter sequence by flavonoid Quercetin. Scientific Reports, 7(1), 1–13. doi:10.1038/s41598-017-03906-3
  • Tu, B., Chen, Z.-F., Liu, Z.-J., Li, R.-R., Ouyang, Y., & Hu, Y.-J. (2015). Study of the structure-activity relationship of flavonoids based on their interaction with human serum albumin. RSC Advances, 5(89), 73290–73300. doi: 10.1039/C5RA12824B
  • Tu, B., Liu, Z. J., Chen, Z. F., Ouyang, Y., & Hu, Y. J. (2015). Understanding the structure-activity relationship between quercetin and naringenin: In vitro. RSC Advances, 5(128), 106171–106181. doi: 10.1039/C5RA22551E
  • Xu, G. R., Mo, Y. I., Yuan, Y., Lee, J. J., & Kim, S. (2007). In situ spectroelectrochemical study of quercetin oxidation and complexation with metal ions in acidic solutions. Bulletin of the Korean Chemical Society, 28(5), 889–892. doi:10.5012/bkcs.2007.28.5.889
  • Zheng, Y. Z., Deng, G., Liang, Q., Chen, D. F., Guo, R., & Lai, R. C. (2017). Antioxidant activity of quercetin and its glucosides from propolis: A theoretical study. Scientific Reports, 7(1), 1–11. doi:10.1038/s41598-017-08024-8
  • Zhou, Y., Zheng, J., Li, Y., Xu, D. P., Li, S., Chen, Y. M., & Li, H. B. (2016). Natural polyphenols for prevention and treatment of cancer. Nutrients, 8(8), 515. doi: 10.3390/nu8080515

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.