255
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Experimental and theoretical investigations of novel oxidovanadium(IV) juglone complex: DNA/HSA interaction and cytotoxic activity

ORCID Icon & ORCID Icon
Pages 474-487 | Received 13 Dec 2018, Accepted 04 Feb 2019, Published online: 04 Mar 2019

References

  • Abyar, F., & Tabrizi, L. (2018). New multinuclear Scaffold molybdocene-gold lidocaine complex: DNA/HSA binding, molecular docking, cytotoxicity and mechanistic insights. Journal of Biomolecular Structure and Dynamics, 1. doi: 10.1080/07391102.2018.1515114.
  • Adam, M. S. S., & Elsawy, H. (2018). Biological potential of oxo-vanadium salicylediene amino-acid complexes as cytotoxic, antimicrobial, antioxidant and DNA interaction. Journal of Photochemistry and Photobiology B, 184, 34–43. doi: 10.1016/j.jphotobiol.2018.05.002.
  • Adhikary, S. D., Samanta, T., Roymahapatra, G., Loiseau, F., Jouvenot, D., Giri, S., … Dinda, J. (2010). Synthesis, structure and electrochemical behaviour of Ru(II)- and Pt(II)- carbene complexes of the NCN-pincer 1,3-bis(2-pyridylmethyl) 1Hbenzimidazolium chloride. New Journal of Chemistry, 34, 1974–1980. doi: 10.1039/b9nj00698b.
  • Aithal, K. B., Kumar, S. M. R., Rao, N. B., Udupa, N., & Rao, S. B. S. (2009). Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cells. Cell Biology International, 33, 1039–1049. doi: 10.1016/j.cellbi.2009.06.018.
  • Altikat, S., Terzi, I., Kuru, H., & Kocacaliskan, I. (2013). Allelopathıc effects of juglone on growth of cucumber and muskmelon seedlings wıth respect to antioxidant enzyme activities and lipid peroxidatıon. Journal of Environmental Protection and Ecology, 14, 1244–1253.
  • Aramesh-Boroujeni, Z., Bordbar, A.-K., Khorasani-Motlagh, M., Sattarinezhad, E., Fani, N., & Noroozifar, M. (2018). Synthesis, characterization, and binding assessment with human serum albumin of three bipyridine lanthanide(III) complexes. Journal of Biomolecular Structure and Dynamics, 1. doi: 10.1080/07391102.2018.1464959.
  • Awasthi, S., & Saraswathi, N. T. (2016). Elucidating the molecular interaction of sinigrin, a potent anticancer glucosinolate from cruciferous vegetables with bovine serum albumin: Effect of methylglyoxal modification. Journal of Biomolecular Structure and Dynamics, 34(10), 2224–2232. doi: 10.1080/07391102
  • Biswas, N., Saha, S., Khanra, S., Sarkar, A., Mandal, D. P., Bhattacharjee, S., … Roy Choudhury, C. R. (2018). Example of two novel thiocyanato bridged copper (II) complexes derived from substituted thiosemicarbazone ligand: Structural elucidation, DNA/albumin binding, biological profile analysis, and molecular docking study. Journal of Biomolecular Structure and Dynamics, 1. doi: 10.1080/07391102.2018.1503564.
  • Bustamante, F. L. S., Silva, M. M. P., Alves, W. A., Pinheiro, C. B., Resende, M., & Lanznaster, J. A. L. C. (2012). Isomerism and nuclearity control in bis (lawsonato) zinc (II) complexes. Polyhedron, 42(1), 43–49. doi: 10.1016/j.poly.2012.04.027
  • Chobot, V., & Hadacek, F. (2009). Milieu-dependent pro-and antioxidant activity of juglone may explain linear and nonlinear effects on seedling development. Journal of Chemical Ecology, 35(3), 383–390. doi: 10.1007/s10886-009-9609-5.
  • Clark, A. M., Jurgens, T. M., & Hufford, C. D. (1990). Antimicrobial activity of juglone. Phytotherapy Research, 4(1), 11–14. doi: 10.1002/ptr.2650040104.
  • Crosby, I. T., Bourke, D. G., Jones, E. D., de Bruyn, P. J., Rhodes, D., Vandegraaff, N., … Robertson, A. D. (2010). Antiviral agents 2. Synthesis of trimeric naphthoquinone analogues of conocurvone and their antiviral evaluation against HIV. Bioorganic & Medicinal Chemistry, 18(17), 6442–6450. doi: 10.1016/j.bmc.2010.06.105.
  • Correia, I., Roy, S., Matos, C. P., Borovic, S., Butenko, N., Cavaco, I., … Pessoa, J. C. (2015). Vanadium (IV) and copper (II) complexes of salicylaldimines and aromatic heterocycles: Cytotoxicity, DNA binding and DNA cleavage properties. Journal of Inorganic Biochemistry, 147, 134–146. doi: 10.1016/j.jinorgbio.2015.02.021
  • Das, A., & Kumar, G. S. (2014). Binding studies of aristololactam-β-D-glucoside and daunomycin to human serum albumin. RSC Advances, 4(62), 33082–33090. doi: 10.1039/C4RA04327H
  • Dama, L., Poul, B., & Jadhav, B. (1998). Antimicrobial activity of naphthoquinonic compounds. Journal of Ecotoxicology & Environmental Monitoring, 8, 213–215.
  • Didier, B., Don Antoine, L., & Elisabeth, D.-C. (2013). 1, 4-naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents. Current Pharmaceutical Design, 19, 2512–2528. doi: 10.2174/1381612811319140003
  • Dighe, S. U., Khan, S., Soni, I., Jain, P., Shukla, S., Yadav, R., … Batra, S. (2015). Synthesis of β-carboline-based N-heterocyclic carbenes and their antiproliferative and antimetastatic activities against human breast cancer cells. Journal of Medicinal Chemistry, 58 (8), 3485–3499. doi: 10.1021/acs.jmedchem.5b00016
  • Dhahagani, K., Mathan Kumar, S., Chakkaravarthi, G., Anitha, K., Rajesh, J., Ramu, A., & Rajagopal, G. (2014). Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 117, 87–94. doi: 10.1016/j.saa.2013.07.101.
  • Dostani, M., Kianfar, A. H., Mahmood, W. A. K., Dinari, M., Farrokhpour, H., Sabzalian, M. R., Abyar, F., … Zarian, M. H. (2017). An experimental and theoretical study on the interaction of DNA and BSA with novel Ni2+, Cu2+ and VO2+ complexes derived from vanillin bidentate Schiff base ligand. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 180, 144–153. doi: 10.1016/j.saa.2017.02.047
  • Eftink, M. R., & Ghiron, C. A. (1981). Fluorescence quenching studies with proteins. Analytical Biochemistry, 114(2), 199–227.
  • Estrada-Montano, A. S., Ryabov, A. D., Gries, A., Gaiddon, C., & Le Lagadec, R. (2017). Iron(III) Pincer Complexes as a Strategy for Anticancer Studies. European Journal of Inorganic Chemistry, 2017, 1673–1678. doi: 10.1002/ejic.201601350.
  • Evangelou, A. M. (2002). Vanadium in cancer treatment. Critical Reviews in Oncology, 42(3), 249–265. doi: 10.1016/S1040-8428(01)00221-9
  • Fedorov, S. N., Shubina, L. K., Kuzmich, A. S., & Polonik, S. G. (2011). Antileukemic properties and structure-activity relationships of O-and S-glycosylated derivatives of juglone and related 1, 4-naphthoquinones. Open Glycoscience, 4(1), 1–5. doi: 10.2174/1875398101104010001
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. (2009). Gaussian 09, Revision B.01. Wallingford, CT: Gaussian, Inc.
  • Fu, X.-B., Liu, D.-D., Lin, Y., Hu, W., Mao, Z.-W., & Le, X.-Y. (2014). Water-soluble DNA minor groove binders as potential chemotherapeutic agents: Synthesis, characterization, DNA binding and cleavage, antioxidation, cytotoxicity and HSA interactions. Dalton Transactions, 43(23), 8721–8737. doi: 10.1039/C3DT53577K
  • Gokara, M., Kimavath, G. B., Podile, A. R., & Subramanyam, R. (2015). Differential interactions and structural stability of chitosan oligomers with human serum albumin and α-1- glycoprotein. Journal of Biomolecular Structure and Dynamics, 33(1), 196–210. doi: 10.1080/07391102.2013.868321
  • Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. Journal of Chemical Physics., 82(1), 270–283. doi: 10.1063/1.448799
  • He, Y., Wang, Y., Tang, L., Liu, H., Chen, W., Zheng, Z., & Zou, G. (2008). Binding of puerarin to human serum albumin: A spectroscopic analysis and molecular docking. Journal of Fluorescence, 18(2), 433–442. doi: 10.1007/s10895-007-0283-0
  • Hetenyi, C., & van der Spoel, D. (2006). Blind docking of drug‐sized compounds to proteins with up to a thousand residues. FEBS Letters, 580, 1447–1450. doi: 10.1016/j.febslet.2006.01.074
  • Hetenyi, C., & van der Spoel, D. (2011). Toward prediction of functional protein pockets using blind docking and pocket search algorithms. Protein Science: A Publication of the Protein Society, 20, 880–893. doi: 10.1002/pro.618.
  • Holder, A. A., Taylor, P., Magnusen, A. R., Moffett, E. T., Meyer, K., Hong, Y., … Jarrett, W. L. (2013). Preliminary anti-cancer photodynamic therapeutic in vitro studies with mixed-metal binuclear ruthenium(II)–vanadium(IV) complexes. Dalton Transactions, 42(33), 11881–11899. doi: 10.1039/c3dt50547b.
  • http://www.rcsb.org/structure/5ZLD.
  • http://www.rcsb.org.
  • Jahani, S., Khorasani-Motlagh, M., & Noroozifar, M. (2016). DNA interaction of europium(III) complex containing 2,2′-bipyridine and its antimicrobial activity. Journal of Biomolecular Structure and Dynamics, 34(3), 612–624. doi: 10.1080/07391102.2015.1048481.
  • Jazestani, M., Chiniforoshan, H., Tabrizi, L., & McArdle, P. (2017). Synthesis and crystal structures of cobalt(II), cadmium(II), and zinc(II) complexes of 4-nitro phenylcyanamide: Enhancing the biological properties through bound to human serum albumin. Journal of Biomolecular Structure and Dynamics, 35(9), 2055–2065. doi: 10.1080/07391102.2016.1201006.
  • Judson, R. S., Jaeger, E. P., & Treasurywala, A. M. (1994). A genetic algorithm based method for docking flexible molecules. Journal of Molecular Structure: THEOCHEM, 308, 191–206. doi: 10.1016/0166-1280(94)80102-9
  • Kikuta, E., Katsube, N., & Kimura, E. (1999). Natural and synthetic double-stranded DNA binding studies of macrocyclic tetraamine zinc (II) complexes appended with polyaromatic groups. Jbic Journal of Biological Inorganic Chemistry, 4(4), 431–440. doi: 10.1007/s007750050329.
  • Kubanik, M., Kandioller, W., Kim, K., Anderson, R. F., Klapproth, E., Jakupec, M. A., … Hartinger, C. G. (2016). Towards targeting anticancer drugs: Ruthenium(II)–arene complexes with biologically active naphthoquinone-derived ligand systems. Dalton Transactions, 45(33), 13091–13103. doi: 10.1039/C6DT01110A.
  • Lakshmipraba, J., Arunachalam, S., Solomon, R. V., Venuvanalingam, P., Riyasdeen, A., Dhivya, R., & Akbarsha, M. A. (2015). Surfactant–copper(II) Schiff base complexes: Synthesis, structural investigation, DNA interaction, docking studies, and cytotoxic activity. Journal of Biomolecular Structure and Dynamics, 33(4), 877–891. doi: 10.1080/07391102.2014.918523.
  • Leon, I. E., Butenko, N., Di Virgilio, A. L., Muglia, C. I., Baran, E. J., Cavaco, I., & Etcheverry, S. B. (2014). Vanadium and cancer treatment: Antitumoral mechanisms of three oxidovanadium(IV) complexes on a human osteosarcoma cell line. Journal of Inorganic Biochemistry, 134, 106–117. doi: 10.1016/j.jinorgbio.2013.10.009.
  • Lewis, N. A., Liu, F., Seymour, L., Magnusen, A., Erves, T. R., Arca, J. F., … Holder, A. A. (2012). Synthesis, Characterisation, and Preliminary In Vitro Studies of Vanadium(IV) Complexes with a Schiff Base and Thiosemicarbazones as Mixed Ligands. European Journal of Inorganic Chemistry, 2012(4), 664–677. doi: 10.1002/ejic.201100898
  • Lian, W.-J., Wang, X.-T., Xie, C.-Z., Tian, H., Song, X.-Q., Pan, H.-T., … Xu, J.-Y. (2016). Mixed-ligand copper(II) Schiff base complexes: The role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity. Dalton Transactions, 45(22), 9073–9087. doi: 10.1039/C6DT00461J
  • Lown, J. W., & Joshua, A. V. (1979). Molecular mechanism of binding of pyrrolo(1,4)benzodiazepine antitumour agents to deoxyribonucleic acid: Anthramycin and tomaymycin. Biochemical Pharmacology, 28(13), 2017–2026. doi: 10.1016/0006-2952(79)90218-1.
  • Mansouri-Torshizi, H., Shahraki, S., Sori Nezami, Z., Ghahghaei, A., Najmedini, S., Divsalar, A., … Saboury, A. A. (2014). Platinum(II)/palladium(II) complexes with n-propyldithiocarbamate and 2,2′-bipyridine: Synthesis, characterization, biological activity and interaction with calf thymus DNA. Complex Metals, 1(1), 23–31. doi: 10.1080/2164232X.2014.883288
  • Mohamadi, M., Yousef Ebrahimipour, S., Torkzadeh-Mahani, M., Forod, S., & Akbari, A. (2015). A mononuclear diketone-based oxido-vanadium(IV) complex: Structure, DNA and BSA binding, molecular docking and anticancer activities against MCF-7, HPG-2, and HT-29 cell lines. RSC Advances, 5(122), 101063–101075. doi: 10.1039/C5RA13715B.
  • Montenegro, R. C., Araújo, A. J., Molina, M. T., Filho, J. D. B. M., Rocha, D. D., Lopéz-Montero, E., … Costa-Lotufo, L. V. (2010). Cytotoxic activity of naphthoquinones with special emphasis on juglone and its 5-methyl derivative. Chemico-Biological Interactions, 184(3), 439–448. doi: 10.1016/j.cbi.2010.01.041.
  • Nehru, S., Arunachalam, S., Arun, R., & Premkumar, K. (2014). Polymer–cobalt(III) complexes: Structural analysis of metal chelates on DNA interaction and comparative cytotoxic activity. Journal of Biomolecular Structure and Dynamics, 32(11), 1876–1888. doi: 10.1080/07391102.2013.836460.
  • Ni, L., Zhao, H., Tao, L., Li, X., Zhou, Z., Sun, Y., … Diao, G. (2018). Synthesis, In vitro Cytotoxicity, and Structure–activity Relationships (SAR) of Multidentate Oxidovanadium(IV) Complexes as Anticancer Agents. Dalton Transactions, 47(30), 10035–10045. doi: 10.1039/C8DT01778F.
  • Oliveira, K. M., Liany, L.-D., Corrêa, R. S., Deflon, V. M., Cominetti, M. R., & Batista, A. A. (2017). Selective Ru (II)/lawsone complexes inhibiting tumor cell growth by apoptosis. Journal of Inorganic Biochemistry, 176, 66–76. doi: 10.1016/j.jinorgbio.2017.08.019.
  • Park, H., Lee, J., & Lee, S. (2006). Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins: Structure, Function, and Bioinformatics, 65(3), 549–554. doi: 10.1002/prot.21183.
  • Pugh, D., Wright, J. A., Freeman, S., & Danopoulos, A. A. (2006). ‘Pincer’ dicarbene complexes of some early transition metals and uranium. Dalton Transactions, (6), 775–782. doi: 10.1039/b512133g.
  • Rahnama, E., Mahmoodian-Moghaddam, M., Khorsand- Ahmadi, S., Saberi, M. R., & Chamani, J. (2015). Binding site identification of metformin to human serum albumin and glycated human serum albumin by spectroscopic and molecular modeling techniques: A comparison study. Journal of Biomolecular Structure and Dynamics, 33(3), 513–533. doi: 10.1080/07391102.2014.893540
  • Rani, V., Singh, H. B., & Butcher, R. J. (2018). Protic and substituted NCN palladium(II) pincer complexes with1,3-bis(benzimidazol-20-yl)-2-bromobenzenes: Structure and catalysis. Journal of Organometallic Chemistry, 859, 33–43. doi: 10.1016/j.jorganchem.2018.01.027.
  • Rehman, M. T., Ahmed, S., & Khan, A. U. (2016). Interaction of meropenem with ‘N’ and ‘B’ isoforms of human serum albumin: A spectroscopic and molecular docking study. Journal of Biomolecular Structure and Dynamics, 34(9), 1849–1864. doi: 10.1080/07391102.2015.1094411.
  • Rondevaldova, J., Novy, P., & Kokoska, L. (2015). In vitro combinatory antimicrobial effect of plumbagin with oxacillin and tetracycline against Staphylococcus aureus. Phytotherapy Research, 29(1), 144–147. doi: 10.1002/ptr.5237.
  • Ribeiro, M. A., Lanznaster, M., Silva, M. M., Resende, J. A., Pinheiro, M. V., Krambrock, K., … Pinheiro, C. B. (2013). Cobalt lawsone complexes: Searching for new valence tautomers. Dalton Transactions, 42(15), 5462–5470. doi: 10.1039/c3dt32968b.
  • Sasmal, P. K., Patra, A. K., Nethaji, M., & Chakravarty, A. R. (2007). DNA cleavage by new oxovanadium(IV) complexes of N-salicylidene α-amino acids and phenanthroline bases in the photodynamic therapy window. Inorganic Chemistry, 46(26), 11112–11121. doi: 10.1021/ic7011793.
  • Sasmal, P. K., Saha, S., Majumdar, R., De, S., Dighe, R. R., & Chakravarty, A. R. (2010). Oxovanadium(IV) complexes of phenanthroline bases: The dipyridophenazine complex as a near-IR photocytotoxic agent. Dalton Transactions, 39(8), 2147–2158. doi: 10.1039/B917265C.
  • Salunke-Gawali, S., Kathawate, L., & Puranik, V. G. (2012). MOF with hydroxynaphthoquinone as organic linker: Molecular structure of [Zn(Chlorolawsone)2(H2O)2] and thermogravimetric studies. Journal of Molecular Structure., 1022, 189–196. doi: 10.1016/j.molstruc.2012.05.012.
  • Scalese, G., Mosquillo, M. F., Rostan, S., Castiglioni, J., Alho, I., Perez, L., … Gambino, D. (2017). Heteroleptic oxidovanadium(IV) complexes of 2-hydroxynaphtylaldimine and polypyridyl ligands against Trypanosoma cruzi and prostate cancer cells. Journal of Inorganic Biochemistry, 175, 154–166. doi: 10.1016/j.jinorgbio.2017.07.014.
  • Shahraki, S., Shiri, F., & Saeidifar, M. (2018). Synthesis, characterization, in silico ADMET prediction, and protein binding analysis of a novel zinc(II) Schiff-base complex: Application of multi-spectroscopic and computational techniques. Journal of Biomolecular Structure and Dynamics, 36(7), 1666–1680. doi: 10.1080/07391102.2017.1334595.
  • Shahraki, S., & Heydari, A. (2017). Binding forces between a novel Schiff base palladium(II) complex and two carrier proteins: Human serum albumi and β-lactoglobulin. Journal of Biomolecular Structure and Dynamics, 36(11), 2807–2821. doi: 10.1080/07391102.2017.1367723.
  • Singh, N., Pagariya, D., Jain, S., Naik, S., & Kishore, N. (2018). Interaction of copper (II) complexes by bovine serum albumin: Spectroscopic and calorimetric insights. Journal of Biomolecular Structure and Dynamics, 36(9), 2449–2462. doi: 10.1080/07391102.2017.1355848.
  • Sorinezami, Z., Mansouri-Torshizi, H., & Ghanbari, B. (2017). Synthesis of PdO nanoparticles: Crystal structure, DNA binding, and cytotoxicity of a new hydroxyl-quinolinato-palladium complex. Inorganic and Nano-Metal Chemistry, 47(4), 500–508. doi: 10.1080/15533174.2016.1186079.
  • Suganthi, M., & Elango, K. P. (2018). Spectroscopic and molecular docking studies on the albumin-binding properties of metal(II) complexes of Mannich base derived from lawsone. Journal of Biomolecular Structure and Dynamics, 1. doi: 10.1080/07391102.2018.1450788.
  • Tabrizi, L., & Chiniforoshan, H. (2017a). Designing new iridium(III) arene complexes of naphthoquinone derivatives as anticancer agents: A structure–activity relationship study. Dalton Transactions, 46(7), 2339–2349. doi: 10.1039/C6DT04339A.
  • Tabrizi, L., & Chiniforoshan, H. (2017b). New cyclometalated Ir (III) complexes with NCN pincer and meso-phenylcyanamide BODIPY ligands as efficient photodynamic therapy agents. RSC Advances, 7(54), 34160–34169. doi: 10.1039/C7RA05579J.
  • Tabrizi, L., & Chiniforoshan, H. (2017c). Synthesis and C–H activation reactions of cyclometalated copper(I) complexes with NCN pincer and 1,3,5-triaza-7-phosphaadamantane derivatives: In vitro antimicrobial and cytotoxic activity. New Journal of Chemistry, 41(19), 10972–10984. doi: 10.1039/C7NJ02500A.
  • Tabrizi, L. (2018). Novel cyclometalated Fe(II) complex with NCN pincer and BODIPY‐appended 4'‐ethynyl‐2,2':6',2”‐terpyridine as mitochondria‐targeted photodynamic anticancer agents. Applied Organometallic Chemistry, 32, e4161. doi: 10.1002/aoc.4161.
  • Tabrizi, L., & Chiniforoshan, H. (2017d). The cytotoxicity and mechanism of action of new multinuclear Scaffold AuIII, PdII pincer complexes containing a bis(diphenylphosphino) ferrocene/non-ferrocene ligand. Dalton Transactions, 46(41), 14164–14173. doi: 10.1039/C7DT02887C.
  • Tabrizi, L., & Chiniforoshan, H. (2017e). High-performance room temperature gas sensor based on gold (III) pincer complex with high sensitivity for NH3. Sensors & Actuators, B, 245, 815–820. doi: 10.1016/j.snb.2017.01.193.
  • Tabrizi, L., Fooladivanda, M., & Chiniforoshan, H. (2016). Copper(II), cobalt(II) and nickel(II) complexes of juglone: Synthesis, structure, DNA interaction and enhanced cytotoxicity. Biometals, 29(6), 981–993. doi: 10.1007/s10534-016-9970-0.
  • Tabrizi, L., & Chiniforoshan, H. (2016a). Ruthenium(II) p-cymene complexes of naphthoquinone derivatives as antitumor agents: A structureactivity relationship study. Journal of Organometallic Chemistry, 822, 211–220. doi: 10.1016/j.jorganchem.2016.09.003.
  • Tabrizi, L., & Chiniforoshan, H. (2016b). A new water-soluble heteronuclear Pd II–Au I pincer complex as two-photon luminescent probe for biological Co2+ detection. RSC Advances, 6(96), 93349–93355. doi: 10.1039/C6RA21386C.
  • Tabrizi, L., & Chiniforoshan, H. (2016c). New RuII pincer complexes: Synthesis, characterization and biological evaluation for photodynamic therapy. Dalton Transactions, 45(45), 18333–18345. doi: 10.1039/C6DT03502G.
  • Tabrizi, L., McArdle, P., Erxleben, A., & Chiniforoshan, H. (2015). Nickel(II) and cobalt(II) complexes of lidocaine: Synthesis, structure and comparative in vitro evaluations of biological perspectives. European Journal of Medicinal Chemistry, 103, 516–529. doi: 10.1016/j.ejmech.2015.09.018.
  • Tandon, V. K., & Kumar, S. (2013). Recent development on naphthoquinone derivatives and their therapeutic applications as anticancer agents. Expert Opinion on Therapeutic Patents, 23(9), 1087–1108. doi: 10.1517/13543776.2013.798303.
  • Tan, D. T. C., Osman, H., Mohamad, S., & Kamaruddin, A. H. (2012). Synthesis and antibacterial activity of juglone derivatives. Journal of Chemistry and Chemical Engineering, 6, 84–89.
  • van der Spoel, D., & Hetényi, C. (2002). Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Science, 11, 1729–1737. doi: 10.1110/ps.0202302.
  • Valle-Bourrouet, G., Ugalde-Saldívar, V. M., Gomez, M., Ortiz-Frade, L. A., Gonzalez, I., & Frontana, C. (2010). Magnetic interactions as a stabilizing factor of semiquinone species of lawsone by metal complexation. Electrochimica Acta., 55(28), 9042–9050. doi: 10.1016/j.electacta.2010.08.006.
  • Vivanco, M., Ruiz, J., Floriani, C., Chiesi-Villa, A., & Rizzoli, C. (1993). Chemistry of the Vanadium-Carbon Bond. 2. Oxovanadium(IV) and Oxovanadium(V) Containing Metal-to-Carbon σ Bonds. Organometallics, 12(5), 1802–1810. doi: 10.1021/om00029a042.
  • Wellington, K. W. (2015). Understanding cancer and the anticancer activities of naphthoquinones – a review. RSC Advances, 5(26), 20309–20338. doi: 10.1039/C4RA13547D.
  • Xu, H., Yu, X., Qu, S., & Sui, D. (2013). Juglone, isolated from Juglans mandshurica Maxim, induces apoptosis via down-regulation of AR expression in human prostate cancer LNCaP cells. Bioorganic & Medicinal Chemistry Letters, 23(12), 3631–4363. doi: 10.1016/j.bmcl.2013.04.007.
  • Yang, J.-Y., & Lee, H.-S. (2015). Antimicrobial activities of active component isolated from Lawsonia inermis leaves and structure-activity relationships of its analogues against food-borne bacteria. Journal of Food Science and Technology, 52(4), 2446–2451. doi: 10.1007/s13197-013-1245-y.
  • Yousuf, I., Bashir, M., Arjmand, F., S., & Tabassum, S. (2018). Multispectroscopic insight, morphological analysis and molecular docking studies of CuII-based chemotherapeutic drug entity with human serum albumin (HSA) and bovine serum albumin (BSA). Journal of Biomolecular Structure and Dynamics, 1. doi: 10.1080/07391102.2018.1512899.
  • Zhai, S., Guo, Q., Dong, J., Xu, T., & Li, L. (2014). An oxovanadium(IV) complex of an L-serine Schiff base and 1,10-phenanthroline: Synthesis, crystal structure, and DNA and albumin-binding properties. Transition Metal Chemistry, 39(3), 271–280. doi: 10.1007/s11243-014-9800-6.
  • Zhao, Y., & Truhlar, D. G. (2006). Comparative DFT study of van der Waals complexes: Rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. The Journal of Physical Chemistry A, 110(15), 5121–5129. doi: 10.1021/jp060231d.
  • Zhang, W., Zhang, K., Xiong, X., & Chen, Y. (2019). Study of interaction between citrate-coated silver nanoparticles and gamma globulin using spectroscopic method. Journal of Biomolecular Structure and Dynamics, doi: 10.1080/07391102.2018.1548976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.