423
Views
31
CrossRef citations to date
0
Altmetric
Letters to the Editor

Elucidating the tight-binding mechanism of two oral anticoagulants to factor Xa by using induced-fit docking and molecular dynamics simulation

, , &
Pages 625-633 | Received 14 Jan 2019, Accepted 12 Feb 2019, Published online: 09 Apr 2019

References

  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi: 10.1063/1.448118
  • Furugohri, T., Isobe, K., Honda, Y., Kamisato-Matsumoto, C., Sugiyama, N., Nagahara, T., … Shibano, T. (2008). DU-176b, a potent and orally active factor Xa inhibitor: In vitro and in vivo pharmacological profiles. Journal of Thrombosis and Haemostasis, 6, 1542–1549. doi: 10.1111/j.1538-7836.2008.03064.x
  • Genheden, S., Nilsson, I., & Ryde, U. (2011). Binding affinities of factor Xa inhibitors estimated by thermodynamic integration and MM/GBSA. Journal of Chemical Information and Modeling, 51(4), 947–958. doi: 10.1021/ci100458f
  • Khadse, A. N., Sharma, M. K., Murumkar, P. R., Rajput, S. J., & Yadav, M. R. (2018). Advances in the development of novel factor Xa Inhibitors: A patent review. Mini-Reviews in Medicinal Chemistry, 18(16), 1332–1353. doi: 10.2174/1389557518666180424120726
  • Li, Y. H., Yu, C. Y., Li, X. X., Zhang, P., Tang, J., Yang, Q., … Zhu, F. (2018). Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Research, 46, D1121–D1127. doi: 10.1093/nar/gkx1076
  • Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H., & Yao, X. (2018). Molecular dynamics simulations and novel drug discovery. Expert Opinion on Drug Discovery, 13(1), 23–37. doi: 10.1080/17460441.2018.1403419
  • Nagata, T., Yoshino, T., Haginoya, N., Yoshikawa, K., Nagamochi, M., Kobayashi, S., … Kanno, H. (2009). Discovery of N-[(1R,2S,5S)-2-{[(5-chloroindol-2-yl)carbonyl]amino}-5-(dimethylcarbamoyl)cycloh exyl]-5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridine-2-carboxamide hydrochloride: a novel, potent and orally active direct inhibitor of factor Xa. Bioorganic & Medicinal Chemistry, 17, 1193–1206. doi: 10.1016/j.bmc.2008.12.037
  • Pinto, D. J., Smallheer, J. M., Cheney, D. L., Knabb, R. M., & Wexler, R. R. (2010). Factor Xa inhibitors: Next-generation antithrombotic agents. Journal of Medicinal Chemistry, 53(17), 6243–6274. doi: 10.1021/jm100146h
  • Samama, M. M. (2011). The mechanism of action of rivaroxaban–an oral, direct factor Xa inhibitor–compared with other anticoagulants. Thrombosis Research, 127(6), 497–504. doi: 10.1016/j.thromres.2010.09.008
  • Weitz, J. I., Eikelboom, J. W., & Samama, M. M. (2012). New antithrombotic drugs: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 141(2), e120S–e151S. doi: 10.1378/chest.11-2294
  • Xue, W., Wang, P., Tu, G., Yang, F., Zheng, G., Li, X., … Zhu, F. (2018). Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Physical Chemistry Chemical Physics, 20(9), 6606–6616. doi: 10.1039/C7CP07869B
  • Yang, F., Zheng, G., Fu, T., Li, X., Tu, G., Li, Y. H., … Zhu, F. (2018). Prediction of the binding mode and resistance profile for a dual-target pyrrolyl diketo acid scaffold against HIV-1 integrase and reverse-transcriptase-associated ribonuclease H. Physical Chemistry Chemical Physics, 20(37), 23873–23884. doi: 10.1039/C8CP01843J
  • Yoshikawa, K., Kobayashi, S., Nakamoto, Y., Haginoya, N., Komoriya, S., Yoshino, T., … Ohta, T. (2009). Design, synthesis, and SAR of cis-1,2-diaminocyclohexane derivatives as potent factor Xa inhibitors. Part II: Exploration of 6-6 fused rings as alternative S1 moieties. Bioorganic & Medicinal Chemistry, 17, 8221–8233. doi: 10.1016/j.bmc.2009.10.024
  • Zhan, J. Y., Ma, K., Zheng, Q. C., Yang, G. H., & Zhang, H. X. (2018). Exploring the interactional details between aldose reductase (AKR1B1) and 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid through molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 1–12. doi: 10.1080/07391102.2018.1465851
  • Zheng, G., Xue, W., Yang, F., Zhang, Y., Chen, Y., Yao, X., & Zhu, F. (2017). Revealing vilazodone's binding mechanism underlying its partial agonism to the 5-HT1A receptor in the treatment of major depressive disorder. Physical Chemistry Chemical Physics, 19(42), 28885–28896. doi: 10.1039/C7CP05688E

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.